Karakteristik Kimia dan Morfologi dari Total Suspended Particulate (TSP) di Jakarta dan Puncak-Bogor pada Masa Pembatasan Sosial Berskala Besar

Muharam Syam Nugraha, Asep Saefumillah, Ardhasena Sopaheluwakan

Abstract


Karakteristik Kimia dan Morfologi dari Total Suspended Particulate (TSP) di Jakarta dan Puncak-Bogor pada Masa Pembatasan Sosial Berskala Besar. Penggunaan transportasi umum di DKI Jakarta selama pemberlakuan Pembatasan Sosial Berskala Besar (PSBB) periode April – Mei 2020 meningkatkan kualitas udara secara signifikan, dibandingkan dengan tahun 2019. Salah satu parameter yang dapat menentukan kualitas udara adalah Total Suspended Particulate (TSP). Sampel TSP dikumpulkan dari lokasi Jaringan Pemantau Kualitas Udara Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) di Stasiun Meteorologi Kemayoran-Jakarta dan Pos Polusi Udara Cibeureum, Puncak-Bogor menggunakan alat High Volume Air Sampler (HVAS) selama 24 jam. Periode pengambilan sampel setiap enam hari sekali mulai 14 Maret hingga 19 Mei 2020. Konsentrasi TSP ditentukan menggunakan metode gravimetri. Rata-rata konsentrasi TSP pada tiga periode sampling pertama April 2020 (menjelang dan awal berlakunya PSBB) memiliki nilai terendah di Jakarta dan Puncak-Bogor berturut-turut sebesar 80,08 mg/m3 dan 40,51 mg/m3. Tingkat potensi toksisitas ditentukan untuk mengetahui efeknya terhadap kesehatan manusia. Potensi toksisitas dihitung dengan membagi konsentrasi TSP dengan nilai baku mutu nasional sebesar 230 ug/m3.  Nilai potensial toksisitas rata-rata di Jakarta dan Puncak-Bogor masing-masing sebesar 0,527 dan 0,220. Sumber asal materi partikulat diketahui dengan digunakan model pollution-rose. Sampel TSP dikarakterisasi menggunakan instrumen Scanning Electron Microscopy (SEM). Unsur yang melimpah pada permukaan partikel, secara berurutan terdiri dari O, Si, C, Na, Al, K dan Ca. Rasio komponen (Ca, C, O, Na, Al, Si, dan K) yang terdapat pada sampel TSP dari Jakarta dan Puncak-Bogor masing-masing sebesar 1,303; 1,060; 1,026; 0,995; 0,969; 0,898; dan 0,882. TSP dari Puncak-Bogor memiliki morfologi dengan bentuk cenderung tidak beraturan, sedangkan TSP dari Jakarta cenderung berbentuk bulat yang bertumpuk. Berdasarkan morfologi dan analisis kimianya, sebagian besar sumber TSP di Puncak-Bogor berasal dari alam, sedangkan TSP di Jakarta berasal dari campuran partikulat sumber antropogenik.



Keywords


TSP, Pollution-rose, Scanning Electron Microscope (SEM), Morfologi, Antropogenik

References


Agrawal, A., Upadhyay, V. K., & Sachdeva, K. (2011). Study of aerosol behavior on the basis of morphological characteristics during festival events in India. Atmospheric Environment, 45(21), 3640–3644. https://doi.org/10.1016/j.atmosenv.2011.04.006

Ahmady-Birgani, H., Mirnejad, H., Feiznia, S., & McQueen, K. G. (2015). Mineralogy and geochemistry of atmospheric particulates in western Iran. Atmospheric Environment, 119, 262–272. https://doi.org/10.1016/j.atmosenv.2015.08.021

Cruz-Campas, M., Ramirez-Leal, R., & Lopez-Perez, N. (2019). TSP Analysis Performed by SEM-EDS to Air Quality Studies. Microscopy and Microanalysis, 25(S2), 768–769. https://doi.org/10.1017/s1431927619004574

Dai, J., Kim, K. H., Dutta, T., Park, W. M., Hong, J. K., Jung, K., & Brown, R. J. C. (2016). Monitoring of airborne particulate matter at mountainous urban sites. Environmental Monitoring and Assessment, 188(8). https://doi.org/10.1007/s10661-016-5501-2

Ediagbonya, T. F. (2014). Analysis of Seasonal Variation of Atmospheric Total Suspended Particulate in Sapele (Urban Area) of Delta State, Nigeria. In Nigerian Journal of Scientific Research (Vol. 13, Issue 1).

Espejo, W., Celis, J. E., Chiang, G., & Bahamonde, P. (2020). Environment and COVID-19: Pollutants, impacts, dissemination, management and recommendations for facing future epidemic threats. Science of the Total Environment, 747. https://doi.org/10.1016/j.scitotenv.2020.141314

González, L. T., Rodríguez, F. E. L., Sánchez-Domínguez, M., Leyva-Porras, C., Silva-Vidaurri, L. G., Acuna-Askar, K., Kharisov, B. I., Villarreal Chiu, J. F., & Alfaro Barbosa, J. M. (2016). Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico. Atmospheric Environment, 143. https://doi.org/10.1016/j.atmosenv.2016.08.053

Hafidzhah Dyah Ayu Anggraeni, S., Hanani Darundiati, Y., & Joko, T. (2021). Analisis Konsentrasi PM10 Hasil Pengukuran Stasiun BMKG Kemayoran di Jakarta Pusat Pada Masa Pandemi COVID-19. Media Kesehatan Masyarakat Indonesia. https://doi.org/10.14710/mkmi.20.1.63-69

Hleis, D., Fernández-Olmo, I., Ledoux, F., Kfoury, A., Courcot, L., Desmonts, T., & Courcot, D. (2013). Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. Journal of Hazardous Materials, 250–251, 246–255. https://doi.org/10.1016/j.jhazmat.2013.01.080

Khan, M. F., Latif, M. T., Amil, N., Juneng, L., Mohamad, N., Nadzir, M. S. M., & Hoque, H. M. S. (2015). Characterization and source apportionment of particle number concentration at a semi-urban tropical environment. Environmental Science and Pollution Research, 22(17), 13111–13126. https://doi.org/10.1007/s11356-015-4541-4

Longoria-Rodríguez, F. E., González, L. T., Mancilla, Y., Acuña-Askar, K., Arizpe-Zapata, J. A., González, J., Kharissova, O. v., & Mendoza, A. (2021). Sequential SEM-EDS, PLM, and MRS microanalysis of individual atmospheric particles: A useful tool for assigning emission sources. Toxics, 9(2), 1–22. https://doi.org/10.3390/toxics9020037

López-Ayala, O., González-Hernández, L. T., Alcantar-Rosales, V. M., Elizarragaz-de la Rosa, D., Heras-Ramírez, M. E., Silva-Vidaurri, L. G., Alfaro-Barbosa, J. M., & Gaspar-Ramírez, O. (2019). Levels of polycyclic aromatic hydrocarbons associated with particulate matter in a highly urbanized and industrialized region in northeastern Mexico. Atmospheric Pollution Research, 10(5), 1655–1662. https://doi.org/10.1016/j.apr.2019.06.006

Mahendra Putra, R., Anjar Rani, N., Bidang Manajemen Observasi Meteorologi Permukaan, S., & Meteorologi Klimatologi dan Geofisika, B. (2020). Prediksi Curah Hujan Harian di Stasiun Meteorologi Kemayoran Menggunakan Artificial Neural Network (ANN) (Vol. 1).

Mico, S., Tsaousi, E., Deda, A., & Pomonis, P. (2015). Characterization of Airborne Particles And Source Identification Using SEM/EDS. Chem. Bull, 4(4), 224–229. https://doi.org/10.17628/ECB.2015.4.224

Nishihashi, M., Mukai, H., Terao, Y., Hashimoto, S., Osonoi, Y., Boer, R., Ardiansyah, M., Budianto, B., Immanuel, G. S., Rakhman, A., Nugroho, R., Suwedi, N., Rifai, A., Ihsan, I. M., Sulaiman, A., Gunawan, D., Suharguniyawan, E., Nugraha, M. S., Wattimena, R. C., & Ilahi, A. F. (2019). Greenhouse gases and air pollutants monitoring project around Jakarta megacity. IOP Conference Series: Earth and Environmental Science, 303(1). https://doi.org/10.1088/1755-1315/303/1/012038

Ochsenkühn-Petropoulou, M., Lyberopoulou, T., Argyropoulou, R., Tsopelas, F., & Ochsenkühn, K.-M. (2009). Chemical and Structural Characterization of Airborne Particulate Matter In An Industrial and An Urban Area In Greece. https://www.researchgate.net/publication/230720567

Pachauri, T., Singla, V., Satsangi, A., Lakhani, A., & Maharaj Kumari, K. (2013). SEM-EDX characterization of individual coarse particles in Agra, India. Aerosol and Air Quality Research, 13(2), 523–536. https://doi.org/10.4209/aaqr.2012.04.0095

Peraturan Pemerintah no 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup, Lampiran 7. (2021).

Pipal, A. S., Kulshrestha, A., & Taneja, A. (2011). Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India. Atmospheric Environment, 45(21), 3621–3630. https://doi.org/10.1016/j.atmosenv.2011.03.062

Priyo Purnomo, E., Dzinnun, Y., & Salsabila, L. (2020). Restriction On Public Transportation Reface A Quality Air Pollution Index During Covid-19 In Indonesia And Thailand. Vol. 17 No. 8 (2020): PalArch’s Journal of Archaeology of Egypt/Egyptology

Ramirez-Leal, R. (2020). Elemental Morphological and Chemical Characterization of Individual TSP Particles by SEM-EDS. Microscopy and Microanalysis, 26(S2), 2202–2204. https://doi.org/10.1017/s1431927620020796

Wang, T., Rovira, J., Sierra, J., Chen, S. J., Mai, B. X., Schuhmacher, M., & Domingo, J. L. (2019). Characterization and risk assessment of total suspended particles (TSP) and fine particles (PM2.5) in a rural transformational e-waste recycling region of Southern China. Science of the Total Environment, 692, 432–440. https://doi.org/10.1016/j.scitotenv.2019.07.271

Zangari, S., Hill, D. T., Charette, A. T., & Mirowsky, J. E. (2020). Air quality changes in New York City during the COVID-19 pandemic. Science of the Total Environment, 742. https://doi.org/10.1016/j.scitotenv.2020.140496

Zhang, L., Yang, L., Zhou, Q., Zhang, X., Xing, W., Zhang, H., Toriba, A., Hayakawa, K., & Tang, N. (2020). Impact of the COVID-19 outbreak on the long-range transport of particulate pahs in east asia. Aerosol and Air Quality Research, 20(10), 2035–2046. https://doi.org/10.4209/aaqr.2020.07.0388




DOI: https://doi.org/10.20886/jklh.2021.15.2.121-132

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ecolab

This Journal Index by:

 

 

 

 

e-ISSN: 2502-8812, p-ISSN: 1978-5860
Ecolab is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.