Karakteristik Logam-logam dalam Partikel Tak Terlarut Debu Jatuh di Serpong

Retno Puji Lestari, S.Si,M.Sc, Bambang Hindratmo, Ricky Nelson

Abstract


Karakteristik Logam-logam dalam Partikel Tak Terlarut Debu Jatuh di Serpong. Partikulat merupakan bentuk polutan yang paling terlihat dalam pencemaran udara. Selain TSP, PM10, dan PM2,5, ada pula debu jatuh yang terdiri dari partikel-partikel yang dapat melewati saringan 1 mm, namun cukup berat untuk dapat jatuh dari udara ambien ke permukaan tanah. Kajian pemantauan debu jatuh di Pusat Standardisasi Instrumen dan Kualitas Lingkungan Hidup (PSIKLH) Serpong dilakukan dalam periode 2018-2020 untuk mengetahui konsentrasi debu jatuh dan logam-logam yang terkandung di dalam partikel tak terlarut. Pengujian debu jatuh mengacu pada ASTM  D 1739-1998 (2004): Standard Methods for Collection and Measurement of Dustfall. Alat sampling debu jatuh merupakan sebuah kontainer gelas dengan ukuran tertentu yang ditempatkan di tempat terbuka dan dibiarkan selama 30 hari sebelum dianalisis di laboratorium. Air hasil tampungan selama sampling tersebut dikumpulkan dalam wadah sampel. Partikulat tak terlarut dan terlarut dalam debu jatuh ditentukan secara terpisah menggunakan metode gravimetri, sementara logam-logam dianalisis menggunakan Spektrofotometri Serapan Atom Hitachi ZA-3300 dengan metode modifikasi SNI 7119-4-2017. Konsentrasi rata-rata tahunan debu jatuh di Serpong pada Juni - Desember 2018, Maret - Desember 2019, dan Maret - Desember 2020 masing-masing adalah 4,5±2,9; 5,5±2,3; dan 5,9±4,1 t/km2/bulan. Nilai tersebut masih berada di bawah baku mutu debu jatuh berdasarkan PP No 41/1999 yaitu 10 t/km2/bulan. Berdasarkan PP No 22/2021 Lampiran VII tentang Baku Mutu Udara Ambien, parameter ini tidak lagi dimasukkan. Lima logam yang dominan ditemukan dalam partikel tak terlarut debu jatuh adalah Fe>K>Zn>Mg>Ca dengan konsentrasi rata-rata 10,3>2,4>1,9>1,5>0,3 mg/kg. Potensi sumber pencemaran diduga berasal dari sumber alami seperti mineral kerak bumi dan kegiatan antropogenik seperti material konstruksi bangunan, sektor industri, dan transportasi.



Keywords


debu jatuh, partikel, logam, pencemaran udara

References


Al-Awadhi, J. M. (2005). Dust fallout characteristics in Kuwait: a case study. Kuwait Journal of Science and Engineering, 32(2), 135.

Alahmr, F. O. M., Othman, M., Abd Wahid, N. B., Halim, A. A., & Latif, M. T. (2012). Compositions of dust fall around semi-urban areas in Malaysia. Aerosol and Air Quality Research, 12(4), 629-642.

Almuhanna, E. A. (2015). Dustfall associated with dust storms in the Al-Ahsa Oasis of Saudi Arabia. Open Journal of Air Pollution, Vol.04No.02, 11. doi:10.4236/ojap.2015.42007

ASTM. (2004). Standard methods for collection and measurement of dustfall ASTM D 1739-1998 (2004).

Báez A., R. B., R. García, H. Padilla, M.C. Torres. (2007). Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico. Atmospheric Research, 86(1), 61-75. doi:https://doi.org/10.1016/j.atmosres.2007.03.005

Bao, K., Xing, W., Yu, X., Zhao, H., McLaughlin, N., Lu, X., & Wang, G. (2012). Recent atmospheric dust deposition in an ombrotrophic peat bog in Great Hinggan Mountain, Northeast China. Sci. Total Environ., 431, 33-45.

Bermudez, G. M., Jasan, R., Plá, R., & Pignata, M. L. (2012). Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition. Journal of hazardous materials, 213, 447-456.

Biglari, H., Geravandi, S., Mohammadi, M. J., Porazmey, E. J., Chuturkova, R. Z., Khaniabadi, Y. O., . . . Yari, A. R. (2017). Relationship between air particulate matter and meteorological parameters. Fresenius environmental bulletin, 26(6), 4047-4056.

Eivazzadeh, M., Hassanvand, M. S., Faridi, S., & Gholampour, A. (2021). Source apportionment and deposition of dustfall-bound trace elements around Tabriz, Iran. Environmental Science and Pollution Research, 1-13.

Fernández-Olmo, I., Puente, M., & Irabien, A. (2015). A comparative study between the fluxes of trace elements in bulk atmospheric deposition at industrial, urban, traffic, and rural sites. Environ. Sci. Pollut. Res., 22(17), 13427-13441.

Hulett Jr, L., Weinberger, A., Northcutt, K., & Ferguson, M. (1980). Chemical species in fly ash from coal-burning power plants. Science, 210(4476), 1356-1358.

Kamble, R. (2015). Dust fall rate and its composition in Chandrapur industrial cluster, central India. International Journal of Environment, 4(3), 96-110.

KLHK. (2014). IK-3/U/LPDL Penentuan Dustfall di Udara Ambien. P3KLL Serpong.

Li, Y., Zhao, B., Duan, K., Cai, J., Niu, W., & Dong, X. (2020). Assessments of Water-Soluble Inorganic Ions and Heavy Metals in Atmospheric Dustfall and Topsoil in Lanzhou, China. International journal of environmental research and public health, 17(8), 2970.

Mohamed, T. A., Mohamed, M. A.-K., Rabeiy, R., & Ghandour, M. A. (2013). A study of heavy metals in the dust fall around Assiut fertilizer plant. Journal of Environmental Protection, 4(12), 1488.

NOAA. (2021). Air Resource Laboratory: Transport & Dispersion Modeling HYSPLIT. Retrieved from https://www.ready.noaa.gov/

Nurlatifah, A., & Driejana, R. (2019). Penelusuran trajektori aerosol di kota Bandung menggunakan HYSPLIT-4 back trajectory model studi kasus: kejadian kabut asap tanggal 23-28 oktober 2015. Jurnal Meteorologi dan Geofisika, 20(2), 91-99.

Pacyna, J. M. (1986). Atmospheric trace elements from natural and anthropogenic sources. Toxic metals in the atmosphere, 33-52.

Preciado, H. F., & Li, L. Y. (2006). Evaluation of metal loadings and bioavailability in air, water and soil along two highways of British Columbia, Canada. Water, Air, and Soil Pollution, 172(1), 81-108.

Qiao, Q., Huang, B., Zhang, C., Piper, J. D., Pan, Y., & Sun, Y. (2013). Assessment of heavy metal contamination of dustfall in northern China from integrated chemical and magnetic investigation. Atmospheric Environment, 74, 182-193.

Ram, S., Kumar, R., Chaudhuri, P., Chanda, S., Santra, S., Sudarshan, M., & Chakraborty, A. (2014). Physico-chemical characterization of street dust and re-suspended dust on plant canopies: An approach for finger printing the urban environment. Ecological indicators, 36, 334-338.

Santoso, M., Lestiani, D. D., Kurniawati, S., Damastuti, E., Kusmartini, I., Atmodjo, D. P. D., . . . Suprayadi, L. S. (2020). Assessment of Urban Air Quality in Indonesia. Aerosol and Air Quality Research, 20. doi:10.4209/aaqr.2019.09.0451

Santoso, M., Lestiani, D. D., Mukhtar, R., Hamonangan, E., Syafrul, H., Markwitz, A., & Hopke, P. K. (2011). Preliminary study of the sources of ambient air pollution in Serpong, Indonesia. Atmospheric Pollution Research, 2(2), 190-196. doi:https://doi.org/10.5094/APR.2011.024

Sharma, A., Singh, S., & Kulshrestha, U. (2017). Determination of urban dust signatures through chemical and mineralogical characterization of atmospheric dustfall in east Delhi (India). J Ind Geophys Union, 21(2), 140-147.

Shi, G., Chen, Z., Teng, J., Bi, C., Zhou, D., Sun, C., . . . Xu, S. (2012). Fluxes, variability and sources of cadmium, lead, arsenic and mercury in dry atmospheric depositions in urban, suburban and rural areas. Environ. Res., 113, 28-32.

Theodosi, C., Stavrakakis, S., Koulaki, F., Stavrakaki, I., Moncheva, S., Papathanasiou, E., . . . Mihalopoulos, N. (2013). The significance of atmospheric inputs of major and trace metals to the Black Sea. J Mar Syst, 109, 94-102.

Usmadi, U. (2020). Pengujian persyaratan analisis (Uji homogenitas dan uji normalitas). Inovasi Pendidikan, 7(1).

Wang, J., Zhang, X., Yang, Q., Zhang, K., Zheng, Y., & Zhou, G. (2018). Pollution characteristics of atmospheric dustfall and heavy metals in a typical inland heavy industry city in China. J. Environ. Sci., 71, 283-291.

Yang, S., Liu, J., Bi, X., Ning, Y., Qiao, S., Yu, Q., & Zhang, J. (2020). Risks related to heavy metal pollution in urban construction dust fall of fast-developing Chinese cities. Ecotoxicology and Environmental Safety, 197, 110628. doi:https://doi.org/10.1016/j.ecoenv.2020.110628

Zhang, Y., Hou, D., Xiong, G., Duan, Y., Cai, C., Wang, X., . . . Liu, W. (2018). Structural equation modeling of PAHs in ambient air, dust fall, soil, and cabbage in vegetable bases of Northern China. Environ. Pollut., 239, 13-20.




DOI: https://doi.org/10.20886/jklh.2022.16.1.1-12

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ecolab

This Journal Index by:

 

 

 

 

e-ISSN: 2502-8812, p-ISSN: 1978-5860
Ecolab is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.