Nine Indonesian Populations of Leucaena leucochepala (Lam.) de Wit. for Wood-Energy Breeding versus var. Tarramba

Rina Laksmi Hendrati, Nur Hidayati

Abstract


Renewable energy from fast-growing woody species needs to be initiated rapidly in Indonesia, facilitated with conducive climate for continuous growth. Selecting suitable species and exploring its populations to capture as wide variation as possible for successful screening, is required. Leucaena leucochepala, which is the wood has long  been used for wood-energy, has been grown widely in Indonesia. Growing for more than 50 generations since its introduction, it should have been very well adapted. This study is to evaluate early performances of its seedlings as genetic materials ready for its breeding. Seeds of ten populations from different regions and habitats have been collected as materials for energy-wood breeding, included var. Tarramba, the best world performer grown in Indonesia. Further, 80 families were selected as genetic materials for progeny test. L. leucochepala produce flowers in 4 ̶ 6 months, therefore evaluation of early growth at 3 months should be appropriate. Results show high variations among populations and families as well as among habitat promising for breeding success. Some Indonesian populations and families grow promisingly due to performing similarly  against var. Tarramba, even some families are better. By using 5 best families of 3 different habitats and compared to var. Tarramba, it shows that plants from Bali, collected from saline area, are as good as var. Tarramba’s, the world best performers.



Keywords


breeding; energy-wood; genetic materials; Leucaena leucochepala; variation

Full Text:

PDF

References


Abou-Elezz, F. M. K., Sarmiento-Franco L., Santos-Ricalde, R. & Solorio-Sanchez, F. (2011). Nutritional effects of dietary inclusion of Leucaena leucocephala and Moringa oleifera leaf meal on Rhode Island Red hens’ performance. Cuban Journal of Agricultural Science, , Volume 45, Number 2,.

Acda, M.N., & Devera, E.E. (2014). Physico-chemical properties of wood pellets from forest residues. Journal of Tropical Forest Science, 26(4): 589.

Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P.,

Sanchez-Blanco, M., & Hernandez, J. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy. https://doi.org/10.3390/agronomy7010018

Álvarez, S. & Sánchez-Blanco, M. J. (2013). Changes in growth rate, root morphology and water use efficiency of potted Callistemoncitrinus plants in response to different levels of water deficit. Sci. Hort. , 156, 54–62.

Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research. https://doi.org/10.12688/f1000research.7678.1

CABI. (2017). Leucaena leucocephala (leucaena). Retrieved March 7, 2018, from https://www.cabi.org/isc/datasheet/31634

Chamberlain, J. R. (2001). Calliandra calothyrsus An Agroforestry Tree for the Humid Tropics.

Chotchutima, S., Kangvansaichol, K., Tudsri, S., & Sripichitt, P. (2013). Effect of spacing on growth, biomass yield and quality of Leucaena (Leucaena leucocephala (Lam.) de Wit.) for renewable energy in Thailand. Journal of Sustainable Bioenergy Systems, 3, 48–56. https://doi.org/10.4236/jsbs.2013.31006

Dillon, S. K., Nolan, M. F., Matter, P., Gapare, W. J., Bragg, J. G., & Southerton, S. G. (2013). Signatures of adaptation and genetic structure among the mainland populations of Pinus radiata (D. Don) inferred from SNP loci. Tree Genetics and Genomes. https://doi.org/10.1007/s11295-013-0650-8

Foroughbakhch, R., Parra, A. C., Luis, J., Piñero, H., Alvarado Vázquez, M. A., Estrada, A. R., & Cardenas, M. L. (2012). Wood volume production and use of 10 woody species in semiarid zones of Northeastern Mexico. International Journal of Forestry Research, 7. https://doi.org/10.1155/2012/529829

Fu, J., Jiang, D., Huang, Y., Zhuang, D., & Ji, W. (2014). Evaluating the Marginal Land Resources Suitable for Developing Bioenergy in Asia. https://doi.org/10.1155/2014/238945

González-García, E., Cáceres, O., Archimède, H., & Santana, H. (2009). Nutritive value of edible forage from two Leucaena leucocephala cultivars with different growth habit and morphology. Agroforestry Systems. https://doi.org/10.1007/s10457-008-9188-4

Jalil, A. H. (2014). Beescape for Meliponiones. Singapore: Partridge,.

Kennedy, S. G., Yanchuk, A. D., & Jefferson, P. A. (2013). Relationship of heartwood traits with diameter growth, implications for genetic selection in Pinus radiata. Tree Genetics & Genomes, 9(5), 1313–1319.

López-López, A., Rogel-Hernández, M. A., Barois, I., Ceballos, A. I. O., Martínez, J., Ormeño-Orrillo, E., & Martínez-Romero, E. (2012). Rhizobium grahamii sp. nov., from nodules of dalea leporina, leucaena leucocephala and clitoria ternatea, and rhizobium mesoamericanum sp. nov., from nodules of phaseolus vulgaris, siratro, cowpea and mimosa pudica. International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijs.0.033555-0

Mainoo, A.A., & Ulzen-Appiah, F. (1996). Growth, wood yield and energy characteristics of Leucaena leucochepala, Gliricidea sepium and Senna siamea at age four years. Ghana Journal of Forestry, Vol. 3, 69–79.

Mosseler, A., Major, J. E., & Ostaff, D. (2017). Distribution of genetic variation in five coppice growth traits among natural populations of seven North American willow (Salix) species. https://doi.org/10.1139/cjfr-2016-0307

Mullen, B. F., & Gutteridge, R. C. (2002). Wood and biomass production of Leucaena in subtropical Australia. Agroforestry Systems. https://doi.org/10.1023/A:1020570115918

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment. https://doi.org/10.1046/j.0016-8025.2001.00808.x

Normaniza, O., Faisal, H. A., & Barakbah, S. S. (2008). Engineering properties of Leucaena leucocephala for prevention of slope failure. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2007.11.004

Nulik, J., Kana Hau, D., Pakereng, C., Edison, R. G., Liubana, D., Ara, S., &

Giles, H. E. (2013). Establishment of Leucaena leucocephala cv. Tarramba in eastern Indonesia. Tropical Grasslands – Forrajes Tropicales, 1, 111–113. Retrieved from www.tropicalgrasslands.info

Pagad, S. (2010). Leucaena leucocephala (tree). Retrieved March 12, 2018, from http://issg.org/database/species/ecology.asp?si=23&fr=1&sts=& ang=FR&ver=print&prtflag=false

Prasad, J.V.N.S., Korwar, G.R., Rao, K.V., Mandal, U.K., Rao, G.R., Srinivas, I., Venkateswarlu, B, Rao, S.N. & Kulkarni, H. D. (2011). Optimum stand density of Leucaena leucocephala for wood production in

Andhra Pradesh, Southern India. Biomass and Bioenergy. , Vol. 35(Issue 1), 227–235.

Rae, A. M., Street, N. R., Robinson, K. M., Harris, N., & Taylor, G. (2009). Five QTL hotspots for yield in short rotation coppice bioenergy poplar: The poplar biomass loci. BioMed Central Plant Biology, 9(23). Retrieved from https://doi.org/10.1186/1471-2229-9-23

Rengsirikul, K., Kanjanakuha, A., Ishii, Y., Kangvansaichol, K., Sripichitt, P., Punsuvon, V., … Tudsri, S. (2011). Potential forage and biomass production of newly introduced varieties of leucaena (Leucaena leucocephala (Lam.) de Wit.) in Thailand. Grassland Science. https://doi.org/10.1111/j.1744-697X.2011.00213.x

Santiago-García, R. J., Coló, S. M., Sollins, P., & Bloem, S. J. Van. (2008). The Role of Nurse Trees in Mitigating Fire Effects on Tropical Dry Forest Restoration: A Case Study.

Shafiq, M., Iqbal, M.Z., Mohammad, A. (2008). Effect of lead and cadmium on germination and seedling growth of Leucaena leucocephala. Journal of Applied Sciences and Environmental Management, Vol 12(No 3).

Stamford, N.P., Filho, J.T.A. & Silva, A. H. N. (2000). Growth and nitrogen fixasion of Leucaena leucochepala and Mimosa caesalpinaefolia in a saline soil of the Brazillian semi-arid region as affectedby sulphur, gypsum and saline water. Tropical Grassland, Vol. 34:1-6.

Susiana, S. (2015). Analisis Kuaitas Air Ekosistem Mangrove di Estuary Perancak, Bali. Universitas Maritim Raja Ali Haji. Tanjung Pinang. Kepulauan Riau. . https://doi.org/DOI 10.17605/OSF.IO/4U3AB

Tang, X., Mu, X., Shao, H., Wang, H. & Brestic, M. (2015). Global plant-responding mechanisms to salt stress: Physiological and molecular levels and implications in biotechnology. Crit. Rev. Biotechnol., 35, 425–437.

Tomar O.S. & Gupta R.K. (1985). Performance of some forest tree species in saline soils under shallow and saline water-table conditions. Plant and Soil. , 87,329-335.

Tullus, A., Rytter, L., Tullus, T., Weih, M., & Tullus, H. (2012). Short-rotation forestry with hybrid aspen (Populus tremula L.×P. tremuloides Michx.) in Northern Europe. Scandinavian Journal of Forest Research. https://doi.org/10.1080/02827581.2011.628949




DOI: https://doi.org/10.20886/bptpth.2018.6.1.15-30

Copyright (c) 2018 Jurnal Perbenihan Tanaman Hutan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Privacy Statement

The names and email addresses entered in this journal site will be used exclusively for the stated purposes of this journal and will not be made available for any other purpose or to any other party.

 

Published by:

Forest Tree Seed Technology Research & Development Center (FTSTRDC)

Balai Penelitian dan Pengembangan Teknologi Perbenihan Tanaman Hutan
Jl. Pakuan Ciheuleut PO BOX 105 Bogor Jawa Barat  Indonesia
telepon  : 0817742659/081283343209/085243000150
email     : yuli_bramasto@yahoo.co.id

               sekrejpth@gmail.com

               triastutiwisudayati@gmail.com

               bpkm_munasri@yahoo.co.id

Web      : http://benih-bogor.litbang.menlhk.go.id/

email    : bptpth@forda-mof.org

This journal indexed by:

 

Copyright © 2017|Jurnal Perbenihan Tanaman Hutan, Balai Penelitian dan Pengembangan Teknologi Perbenihan Tanaman Hutan (e-ISSN 2527-6565, p-ISSN 2354-8568)