BIOMASSA TUSAM (Pinus merkusii Jungh et De Vriese Tapanuli strain) PADA SEBARAN ALAMI DI SUMATERA UTARA

Alfan Gunawan Ahmad, Chairil Anwar Siregar, Ulfah Juniarti Siregar, Hadi Susilo Arifin

Sari


Tegakan alam P. merkusii strain Tapanuli merupakan salah satu simpanan karbon pada ekosistem daratan yang memiliki peranan penting dalam mitigasi perubahan iklim global. Tujuan penelitian ini adalah menyusun persamaan allometrik untuk pendugaan biomassa P. merkusii strain Tapanuli di Sumatera Utara. Lima lokasi yang diteliti meliputi Dolok Tusam Timur dan Dolok Tusam Barat (Hutan lindung); Lobugala dan Parinsoran (Areal perladangan), dan desa Tolang, Kabupaten Tapanuli Selatan (Hutan campuran). Penyusunan persamaan allometrik dilakukan dengan metode destructive sampling yang dikombinasikan dengan metode volumetrik. Jumlah sampel sebanyak 44 pohon dengan diameter antara 13,0 – 120,6 cm. Hasil penelitian menunjukkan bahwa persamaan allometrik terbaik untuk pendugaan biomassa total P. merkusii strain Tapanuli adalah Y= 0,2451(DBH)2,2757 (R² = 0,9784), persamaan untuk pendugaaan biomassa di bagian atas tanah adalah Y=0,1900(DBH)2,2730  (R² = 0,97980), dan  persamaan untuk pendugaaan biomassa di bagian bawah tanah adalah  Y=0,0283(DBH)2,4393 (R² = 0,90240). Estimasi kandungan biomassa total di lima lokasi yang diteliti sebagai berikut: Dolok Tusam Barat 380,8 ton/ha setara dengan 190,4 ton C/ha, Dolok Tusam Timur 375,7 ton/ha setara dengan 187,8 ton C/ha, Lobugala 186,4 ton/ha setara dengan 93,2 ton C/ha Parinsoran 97,9 ton/ha setara dengan 48,9  ton C/ha, dan  Tolang  91,3 ton/ha setara dengan 45,7 ton C/ha


Kata Kunci


Pinus merkusii, strain Tapanuli, persamaan allometrik, biomassa karbon

Teks Lengkap:

pdf Bahasa Indonesia

Referensi


Brown, S. (1997). Estimating Biomass and Biomass Change of Tropical Forests: a Primer UN FAO. Forestry Paper 134, pp 55. FAO, Rome.

Brown, S. (2002). Measuring carbon in forests: current status and future challenges. Environmental Pollution. 116, 363–372.

Cao, J., Wang, X., Tian, Y., Wen, Z., & Zha, T. (2012). Pattern of carbon allocation across three different stages of stand development of a Chinese pine (Pinus tabulaeformis) forest. Ecological Research. 27, 883-892.

Chaturvedi, R.K., Raghubanshi, A.S., & Singh, J.S. (2010). Non-destructive estimation of tree biomass by using wood specific gravity in the estimator. National Academy Science Letters. 33, 133-138.

Chave, J. (2005). Measuring wood density for tropical forest trees. A field manual for CTFS sites. Wood density measurement protocol. Lab. Evolution et Diversite Biologique. Universite Paul Sabatier. Toulouse. France.

Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of The Royal Society London Biological Science. 359, 409-420.

Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.P., Nelson, B.W., Ogawa, H., Puig, H., Riera, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 145, 87-99.

Departemen Kehutanan. (1984). Peta tematik kehutanan provinsi Sumatera Utara. Badan Inventarisasi dan Tata Guna Hutan. Bogor.

[FAO] Food and Agricultural Organization. (2006). Global Forest Resource Assessment 2005. Diakses 25 Mei 2013 dari www.fao.org/forestry/fra2005.

Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management. 90, 59-87.

Finkral, A.J., & Evans, A.M. (2008). The effects of a thinning treatment on carbon stocks in a northen Arizona ponderosa pine forest. Forest Ecology and Management 255, 2743-2750.

Gower, S.T., Kucharik, C.J., & Norman, J.M. (1999). Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems. Remote Sensing of Environment. 70, 29-51.

[IPCC] Intergovernmental Panel on Climate Change. (2007). Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., XXX pp

Iverson, R.I., Brown S., & Grainger A. (1993). Carbon sequestration in tropical Asia: an assessment of technically suitable forest lands using geographic information systems analysis. Climate Research. 3, 23-38.

[JIFPRO] Japan International Forestry Promotion and Cooperation Center. (2000). Manual of biomass measurements in plantation and in regenerated vegetation. Japan: Japan International Forestry Promotion and Cooperation Center.

Kaonga, M.L., & Bayliss-Smith, T.P. (2010). Allometric models for estimation of aboveground carbon stocks in improved fallows in eastern Zambia. Agroforest Systems. 78, 217–232.

Ketterings, Q.M., Coe, R., van Noordwijk, M., Ambagau, Y., & Palm, C.A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management. 146, 199-209.

Kim, C., Jaeyeob, J., Rae-Hyun, K., Yeong-Mo, S., Kyeong, H.L., Jin-Seoung, K., & In-Hyeop, P. (2011). Allometric equations and biomass expansion factors of Japanese red pine on the local level. Landscape and Ecological Engineering. 7, 283-289.

Konopka, B., Hatsuo, T., & Akira, N. (2000). Biomass distribution in 40-year-old trees of Japanese Black Pine. Journal of Forest Research. 5, 163-168.

Lasco, R.D. (2002). Forest carbon budgets in Southeast Asia following harvesting and land cover change. Science in China (Series C). Vol. 45 Supp. Science China Press. Beijing, China.

Levia Jr, D.F. (2008). A generalized allometric equation to predict foliar dry weight on the basis of trunk diameter for eastern white pine (Pinus strobus L.). Forest Ecology and Management 255, 1789 – 1792.

Mangold, R. (1997). Forest Health Monitoring: Field Methods Guide. USDA Forest Service, FHM Monitoring Program, Research Triangle Park, NC 27709. USA.

Microsoft Office Excel. (2007). Microsoft Inc. United States of America.

Niklas, K.J. (1994). Plant allometry: the scalling of form and process. The University of Chicago Press Ltd. London.

Oliver, J.G.J., Janssens-Maenhout, G., & Peters, J.A.H.W. (2012), Trends in global CO2 emissions; 2012 Report, The Hague: PBL Netherlands Environmental Assessment Agency; Ispra: Joint Research Centre.

Peichl, M., & Arain, M.A. (2007). Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management. 253, 68-80.

Picard, N., Saint-André, L., & Henry, M. (2012). Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, 215 pp.

Porte, A., Trichet, P., Didier, B., & Denis, L (2002). Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Ait.). Forest Ecology and Management 158: 71-83.

Reiss, M.J. (1991). The Allometry of growth and reproduction. Cambridge University Press, New York, Sydney.

Sall, J., Lee Creighton., Ann. Lehman. (2005). JMP Start Statistics. A Guide to Statistics and Data Analysis Using JMP and JMP in Software. Thomson Learning Academic Resource Center. Third Edition.

Samalca, I.K. (2007). Estimation of Forest Biomass and its Error. A case in Kalimantan, Indonesia. Thesis. International Institute for Geo-Information Science and Earth Observation (ITC). The Netherlands.

Sharma, M., Richard, G.O., & Ralph, L. A. (2002). A consistent system of equations for tree and stand volume. Forest Ecology and Management 165: 183-191.

Singh, V., Tewari, A., Kushwaha, S.P.S., &. Dadhwal, V.K. (2011). Formulating allometric equations for estimating biomass and carbon stock in small diameter trees. Forest Ecology and Management 261, 1945–1949.

Siregar, C.A. (2007). Pendugaan biomassa pada tanaman Pinus (Pinus merkusii Jungh et de Vriese) dan konservasi karbon tanah Cianten, Jawa Barat. Jurnal Penelitian Hutan dan Konservasi Alam Vol. 4 No. 3.

Siregar, C.A. (2011). Develop Forest Carbon Standard and Carbon Accounting System for Small-scale Plantation Based on Local Experinces. Indonesia’s Ministry of Forestry – International Tropical Timber Organization. RED-PD 007/09 Rev.2 (F).

Socha, J. & Piotr, W. (2007). Allometric equations for estimating the foliage biomass of Scots pine. European Journal of Forest Research 126, 263-270.

Steel, R.G.D. & Torrie, J.H. (1981). Principles and procedures of statistic. New York: Mc Graw-Hill Book Co. Inc.

Tahvanainen, T., Eero, F. (2008). Individual tree models for the crown biomass distribution of Scots pine Norway spruce and birch in Finland. Forest Ecology and Management 255, 455-467.

Turski, M., Cezary, B., Katarzyna, K., Tomasz, N. (2008). Allometric equations for estimating the mass and volume of fresh assimilational apparatus of standing scots pine (Pinus sylvestris L.) trees. Forest Ecology and Management 255, 2678-2687.

[UNEP] United Nations Environment Programme. (2012). The Emissions Gap Report 2012. United Nations Environment Programme (UNEP), Nairobi.

Wang, C. (2006). Biomass allometric equations for 10 co-occuring tree species in Chinese temperate forests. Forest Ecology and Management 222, 9-16.

Wirth, C., Schulze, E.D., Schulze, W., von Stunzer-Karbe, D., Ziegler, W., Mijukova, I.M., Sogatchev, A., Varlagin, A.B., Panvyorov, M., Grigoriev, S., Kusnetzova, W., Siry, M., Hardes, R., Zimmermann, R., Vygodskaya, & N.N. (1999). Above-ground biomass and structure of pristine Siberian Scots forest as controlled by competition and fire. Oecologia 121, 66-80.

Xiang, W., Shaohui, L., Xiangwen, D., Aihua, S., Xiangdong, L., Dalun, T., Meifang, Z., & Changhui, P. (2011). General Allometric equations and biomass allocation of Pinus massoniana trees on regional scale in southern China. Ecological Research. 26, 697-711.

Xiao, C-W., & Ceulemans, R. (2004). Allometric relationships for below- and aboveground biomass of young Scots pines. Forest Ecology and Management. 203, 177–186.

Zianis, D., & Mencuccini, M. (2004). On simplifying allometric analyses of forest biomass. Forest Ecology and Management. 187, 311-332.

Zianis, D., Gavriil, X., Kostas, K., George, K., Dany, G., & Olga, R. (2011). Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. Trees growing in North and South Aegean Islands, Greece. European Journal of Forest Research. 130, 145-160.




DOI: https://doi.org/10.9868/ifrj.2.2.123-133

##submission.copyrightStatement##



Copyright of Jurnal Penelitian Hutan dan Keonservasi Alam (ISSN:2338-9249)

    Creative Commons License