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DYNAMIC PROJECTION OF CLIMATE CHANGE SCENARIOS ON ABOVEGROUND CARBON 
STORAGE OF TROPICAL TREES IN WEST PAPUA, INDONESIA. Through photosynthetic activities, 
tropical forest ecosystems capture and store the most significant carbon emissions in the form of  biomass 
compared with other types of  vegetation, and thus play a highly crucial part in dealing with climate change. 
However, such important role of  tropical forest is very fragile from extreme changes in temperature and 
precipitation, because carbon storage in forest landscape is strongly related to those climate variables.  This 
paper examines the impacts of  future climate disturbances on aboveground carbon storage of  three tropical 
tree species, namely Myristica sp., Palaquium sp., and Syzygium sp. through “what if ” scenarios evaluation using 
Structural Thinking and Experimental Learning Laboratory with Animation (STELLA). Results highlighted 
that when the dynamic simulation was running with five IPCC’s climate change scenarios (Constant year 
2000 concentrations, B1, A1T, A2, and A1F1) for 200 years simulation period, then moderate climate 
change scenarios occured, such as B1 and A1T, would have already caused significant statistical deviation to 
all of  those tree species. At the worst level of  A1F1, the 4°C temperature was coupled with 20% reduction 
in precipitation. Palaquium sp. showed the highest reduction of  aboveground carbon storage with about 
17.216% below its normal value. This finding implies the negative climate feedbacks should be considered  
seriously to ensure the accuracy of  long term forest carbon accounting under future climate uncertainty.

Keywords: Climate change, aboveground carbon storage, West Papua, STELLA

PROYEKSI DINAMIS BERBAGAI SKENARIO PERUBAHAN IKLIM TERHADAP SIMPANAN 
KARBON DI ATAS PERMUKAAN TANAH PADA BERAGAM JENIS POHON TROPIS DI PAPUA 
BARAT, INDONESIA.  Melalui fotosintesis, ekosistem hutan menangkap dan menyimpan emisi karbon dalam bentuk 
biomassa yang paling besar dibandingkan dengan jenis vegetasi lain, dan memainkan peran yang sangat penting dalam 
menangani perubahan iklim. Namun demikian, peran penting tersebut secara signifikan dapat terganggu oleh perubahan 
temperatur dan curah hujan yang ekstrem karena penyimpanan karbon di lanskap hutan sangat terkait dengan variabel iklim 
tersebut. Tulisan ini mempelajari dampak gangguan iklim di masa depan pada penyimpanan karbon di atas tanah pada tiga 
spesies pohon tropis, yaitu Myristica sp., Palaquium sp., dan Syzygium sp. melalui evaluasi skenario "bagaimana jika" 
berbasis STELLA. Hasil penelitian menunjukkan bahwa ketika simulasi dinamis dijalankan mengikuti lima skenario 
perubahan iklim oleh IPCC untuk periode simulasi 200 tahun, terlihat bahwa skenario moderat, seperti B1 dan A1T, 
telah menyebabkan simpangan yang signifikan untuk ketiga spesies pohon tropis tersebut. Pada skenario terburuk A1F1 
(kenaikan suhu 4°C ditambah dengan pengurangan 20% curah hujan), pohon dari spesies Palaquium  sp. memperlihatkan 
tingkat penurunan tertinggi pada simpanan karbon di atas tanah dengan sekitar 17,216% kurang dari nilai normalnya. Hal 
ini menunjukkan bahwa umpan balik negatif  dari perubahan iklim harus diperhitungkan untuk memastikan keakuratan 
penghitungan karbon hutan jangka panjang di bawah ketidakpastian iklim di masa depan.

Kata kunci: Perubahan iklim, simpanan karbon diatas tanah, Papua Barat, STELLA
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I.  INTRODUCTION
It has been widely recognized that carbon 

dioxide (CO2) constitutes for more than half  
of  the total anthropogenic greenhouse gasses 
emissions. Through photosynthesis procedures, 
tropical forest ecosystems capture and store 
the most significant carbon emissions in the 
form of  biomass compared with other types 
of  vegetation, and thus it plays a highly crucial 
part in dealing with climate change. As reported 
by Sha et al. (2015), about 55% of  annual net 
primary production of  biomass across the 
globe is estimated to take place in the tropics. 
Nevertheless, some authors, such as Ricker, 
Gutiérrez-García, and Daly (2007); Dai et al. 
(2014); and Ma et al. (2014), have noted that 
such important role of  tropical forest is very 
vulrnerable to extreme changes in temperature 
and precipitation since carbon storage in forest 
landscape is much related to those climate 
variables. Dai et al. (2014) also added how the 
changes in temperature and/or precipitation 
will drive carbon dynamics in forest ecosystem. 

Nowadays, what is alarming is that the 
earth’s mean temperature has already increased 
by 0.6°C over the last 100 years, and that 
further climate change may raise global 
temperature within the next century by another 
4°C (Intergovernmental Panel on Climate 
Change [IPCC], 2007). Therefore, there is a 
need to assess how the carbon dynamics of  
tropical trees may react to climate change as 
the report has also suggested a negative impact 
of  warming in tropical forests from decreased 
photosynthetic activity. 

Previously, some researchers have carried 
out studies related to climate influence on 
carbon accumulation in forest ecosystems. 
Hunter (2015) assessed the influences of  
temperature and rainfall on carbon stocks 
across Northeastern part of  New South 
Wales, Australia, while Limbu and Koirala 
(2017) examined the climate influence at 
different altitudinal gradients on both below 
and aboveground carbon storage. Recently, Ma 
et al. (2014) predicted the impacts of  climate 

change on aboveground carbon storage rate in 
Northeastern China. Stinziano and Way, (2014) 
evaluated the effect of  rising temperature on 
boreal forest. Meanwhile, climate sensitivity of  
Mediterranean landscape has been investigated 
by Touchan, Shishov, Meko, Nouiri, and  
Grachev (2012). Although all of  those studies 
provide important information on the relation 
between changing climate variables and 
carbon storage, however, the dynamics of  
aboveground carbon storage of  tropical trees 
in the eastern part of  Indonesia under climate 
change scenarios are still unclear. Many other 
researchers had also examined  how the carbon 
stock and biomass accumulation were assessed 
either using terrestrial or remotely sensed 
data (Jaya et al., 2012,  Achmad, Jaya, Saleh, & 
Kuncahyo, 2013; Jaya, 2014).

According to Dominati, Patterson, and 
Mackay (2010), insufficient knowledge of  
carbon storage as ecosystem dynamic flow 
processes may result in the absence of  a 
systematic and flexible method to manage and 
plan the ecosystem, so that temporal study and 
analysis of  dynamic change of  ecosystem service 
is necessary. Furthermore, Dean, Roxburgh, 
and Mackey (2003) and Oni, Dillon, Metcalfe, 
and Futter (2012) contend that dynamic flow 
modeling and its corresponding analyses are 
essential in providing a baseline and “what if ” 
scenarios for evaluating effects related to climate 
disturbances. This paper examines the impacts 
of  future climate disturbances on aboveground 
carbon storage of  three tropical tree species, 
namely Myristica sp., Palaquium sp. and Syzygium 
sp. through “what if ” scenarios evaluation using 
Structural Thinking and Experimental Learning 
Laboratory with Animation (STELLA).

II. MATERIAL AND METHOD
A. Study Site

As depicted in Figure 1, this study was 
conducted in a concession forest area managed 
by PT. Manokwari Mandiri Lestari in Teluk 
Bintuni Regency, West Papua (1057’50”-
3011’26” S; 132044’59”-134014’49” E). 
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This research area is mainly hilly and located 
about 500 meters above sea level with average 
humidity approximately 85%. There are three 
main soil types in the area, namely alluvial, 
gleysol and podzolic.

B.	 Model Conceptualization, Calibration 
and Projection

As shown in Figure 2, dynamic model 
structure for simulating relationship between 
local climate variables and carbon storage 
in this study was developed using STELLA 
9.12, which is principally an object-oriented 
modeling and simulation software. Algorithm 
details of  this dynamic model are shown in 
Appendix 1. Conceptually, in this study there 
are two step sectors in the whole process of  
carbon sequestration flow structure, which are 
carbon capture and carbon storage that can last 
for a long period. Carbon capture refers to the 
uptake of  CO2 from the atmosphere through 
photosynthetic mechanism and its conversion 
to biomass, whilst carbon storage refers to 
the preservation of  carbon as biomass in the 
components of  corresponding trees  (Sha et al., 
2015). 

Firstly, in carbon capture sector, through 
photosynthesis, vegetation converts carbon 
from the atmosphere to carbohydrate and 
stores it in different tree organs. This process of  
carbon capture is related to the process of  tree 
growth (Sha et al., 2015), and it is influenced 

by climatic factors, particularly temperature and 
precipitation rate (Theurillat & Guisan, 2001; 
Laubhann, Sterba, Reinds, & Vries, 2009; Allen 
et al., 2010). In this study, the value of  tree 
growth as a function of  time was adjusted based 
on the value of  annual increment calculated by 
Wahyudi and Anwar (2013), in which  Palaquium 
sp. was grouped into harvested commercial 
species, while both  Myristica sp. and Syzygium 
sp. were grouped into other commercial un-
harvested species, as depicted in Table 1. 
Although in their study, Wahyudi and Anwar 
(2013) have used the term Mean Annual 
Increment (MAI), however, according to several 
other studies such as Vanclay (1994), Avery and 
Harold (2002), and Pretzsch (2009), it seems 
that the term Periodic Annual Increment (PAI) 
is more relevant to represent the growth of  
tree species in natural forest because basically 
there is no age information for those natural 
tree species.

Obtained PAI data, as illustrated in Table 
1, were then used to estimate the tree growth 
period (TGP) for each DBH class. For the 
beginning of  the growth period, due to the 
unavailability of  PAI data for DBH class less 
than 10 cm, the simulation at year 0 was set using 
initial DBH of  10 cm. From that point forward, 
TGP was calculated by dividing the interval of  
each DBH class (cm) with its corresponding 
PAI (cm/year) as depicted in Table 2.

Afterwards, biomass accumulation into the 

Figure 1. Research site map

Dynamic Projection of  Climate Change Scenarios .....................................................(Sandhi Imam Maulana and Yohannes Wibisono)

109



system through photosynthetic activity was 
calibrated using locally developed allometric 
formula (Equation 1), which was specifically 
designed for mixed tree species in the research 
area by Maulana, Wibisono, and Utomo (2016).

where:
TAGB = total aboveground biomass (kg/tree)
DBH   = diameter at breast height (cm)
WD     = wood density or specific gravity (gr/cm3)

In the meantime, in order to obtain values 
of  wood density (WD) and biomass fractions 

allocated to leaves, branches and stems, harvest 
method was applied to 31 trees of  Myristica 
sp., Palaquium sp. and Syzygium sp. Compared 
to wood density values from Soerianegara and 
Lemmens (1993), and Lemmens, Soerianegara, 
and Wong (1995), results of  measurements in 
this study is shown in Figure 3. It illustrates a 
highly rational wood density for each species 
since it is mentioned that the range of  wood 
density for Myristica sp., Palaquium sp., and 
Syzygium sp. are 0.40-0.65 gr/cm3, 0.45-0.51 gr/
cm3, 0.56-0.83 gr/cm3 respectively.

Moving on to the second sector of  

Figure 2. Model structure for simulating climate variables and carbon flows

( ) ( ) ( )  0.267 2.23  0.649Log TAGB Log DBH Log WD= − + + ...(1)
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carbon storage, carbon influx is split in three 
directions, namely stems, branches and leaves. 
As depicted in Figure 4, result from destructive 
measurements to obtain biomass fraction for 
each species adapted from Maulana et al. (2016) 
have illustrated the major biomass storage 
in a tree, followed by branches and leaves. 
Meanwhile, carbon content in tree components 
was determined using biomass to carbon ratio 
value established by Hairiah and Rahayu (2007) 
that was 46%, so that carbon quantity in each 
component was defined by multiplying the dry 
weight of  corresponding components by the 
percentage of   carbon amount.

Calibration for carbon flow into the system 
and litter flow rate were conducted repeatedly 
until there was no significant difference 
between actual storage value approximation 
and dynamic modelling results based on the 
value of  two samples t-test using MINITAB 
14.0 software. In this study, actual carbon 
storage value approximation is defined as the 
value of  total aboveground carbon stored in 

trees over time approached solely based on 
local allometric formula (Equation 1) using 
DBH adjusted by diameter growth periodic 
calculation and WD from field measurement. 
On the other hand, dynamic modeling carbon 
storage value is defined as the value of  total 
aboveground carbon stored in tree over time 
calculated based on STELLA dynamic model 
structure as depicted in Figure 2.

Initial dynamic simulation was set based 
on climate time series data of  perceived 
temperature and precipitation for the last 
decade (2005-2015) that were supplied by the 
National Climatic Data Center (NCDC) from 
its nearest climate station in Teluk Bintuni 
Regency, West Papua. The trends of  these 
climate variables data are illustrated in Figure 5. 
According to these climatic trends, the annual 
range of  temperature and precipitation in the 
research area were about 22.9°C to 31.5°C and 
1042.7 mm/year to 3333.5 m/year respectively.

Subsequently, projections toward future 
probabilities of  climate disturbances were 

Table 1. Tree growth

DBH Class
 (cm)

Palaquium sp. Myristica sp. Syzygium sp.
PAI (cm/year) PAI (cm/year) PAI (cm/year)

10-19 0.2158 0.2108 0.2108
20-29 0.3408 0.3458 0.3458
30-39 0.4058 0.4208 0.4208
40-49 0.4108 0.4358 0.4358
50-59 0.3558 0.3908 0.3908
>60 0.2408 0.2858 0.2858

Source:  Wahyudi and Anwar (2013)

Table 2. Calculation of  Tree Growth Period (TGP) and its simulation time step

DBH class   10-19 cm 20-29 cm 30-39 cm 40-49 cm 50-59 cm
>60cm

TGP calculation (19-10)/PAI (29-20)/PAI (39-30)/PAI (49-40)/PAI (59-50)/PAI

Palaquium sp.
TGP 42 years 26 years 22 years 22 years 25 years

> year 142
Time step year 1 to 42 year 43 to 69 year 70 to 92 year 93 to 115 year 116 to 141

Myristica sp. TGP 43 years 26 years 21 years 21 years 23 years > year 139
Time step year 1 to 43 year 44 to 70 year 71 to 92 year 93 to 114 year 115 to 138

Syzygium sp. TGP 43 years 26 years 21 years 21 years 23 years > year 139
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conducted using scenarios described in Special 
Report on Emission Scenarios (SRES) by 
Intergovernmental Panel on Climate Change 
[IPCC] (2000). Details on climate scenarios 
involved in this study are depicted in Table 3. 
Overall, according to Intergovernmental Panel 
on Climate Change [IPCC] (2000), the first 
scenario (year 2000) is constant  assumes that 
greenhouse gases concentration is held fixed 
at year 2000 levels. Hence, this scenario put 
the lowest projection of  temperature increase 
at 0.6°C. The B2 scenario describes a world 
with less rapid economic and population 
development due to increasing attention to 
environmental sustainability. The A1T scenario 
illustrates a future world with rapid introduction 
of  new technologies of  non-fossil energy 
sources. The A2 scenario considers fragmented 
technological and economic development. 
Lastly, The A1FI scenario puts more emphasis 
on the intensive development of  fossil fuel 
based industries, so that this scenario gets the 

highest estimate of  temperature increase of  
4°C. In the meantime, as suggested in Gardner 
and Urban (2003), in order to examine the 
impact of  future climate disturbances on 
carbon storage of  each species, results from 
dynamic simulations based on IPCC scenarios 
were then compared to results of  their dynamic 
modelling of  actual carbon storage harnessing 
their percentage value of  deviation (Equation 
2), while statistically examined based on paired 
t-test mechanism.

where: 
S   = percentage value of  deviation
Bi  = dynamic modeling of  actual carbon 

stored in tree-i
Di  = its projection based on IPCC scenario
         set in the dynamic model
n    = number of  observations

Table 3. Scenarios of  future climate conditions at the end of  21st century (2090-2099)

Scenario Temperature increase (oC) Precipitation change
Best estimate Likely range Average

Constant year 2000 
concentrations 0.6 0.3-0.9

-20%B1 1.8 1.1-2.9
A1T 2.4 1.4-3.8
A2 3.4 2.0-5.4
A1FI 4.0 2.4-6.4

Source: Intergovernmental Panel on Climate Change [IPCC] (2000)
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III. RESULT AND DISCUSSION
A.	 Actual Approximation vs Dynamic 

Modeling of  C Storage at Baseline 
Condition

To assess the accuracy and enhance 
projection confidence for future “what if ” 
scenarios as described in Bugmann (2001) and 
Ford (2010), actual approximations of  carbon 
storage for each species were initially evaluated 
against its corresponding dynamic modelling 
result set at baseline conditions. This evaluation 
is essential to show that there was no significant 
difference between actual carbon sequestered 
by the system and its dynamic estimation 
(Gardner & Urban, 2003; Ford, 2010).

In the previous study, the prototypes were 
also assessed by using some calculations for 
cost analysis. The result of  the calculation for 
both prototypes is given in Table 4. 

As depicted in Table 4, the result of  t-test, 

shows that t-values are significantly below 
their t-table at 95% confidence interval; and 
P-values (P>0.05) also indicate weak evidence 
against the null hypothesis (Ho). This implies 
that H0 (dynamic modelling is close to the 
actual approximation of  carbon storage, 
expressing that for each species) are statistically 
accepted (Gardner & Urban, 2003). In addition, 
values of  Pearson correlation test (r) between 
approximation and its corresponding dynamic 
modelling of  actual storage for each species 
shows a very high and positive correlation.  
As illustrated in Figure 6, the overall trends 
of  carbon storage for each species formed 
a common rough sigmoid shaped growth 
curve, showing that the carbon amount stored 
increases fast in their early age, while later this 
trend tends to gradually slow down due to the 
decrease in carbon capture.

Figure 4. Observed biomass fraction (Source: adapted from Maulana et al., 2016)

Figure 5. Baseline data for temperature and precipitation as observed by NCDC

Myristica Palaquium Syzygium
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B.	 Dynamic Projections of  Future C 
Storage Based on IPCC Scenarios
In general, as illustrated in Figure 7, 8 

and 9, there were dynamic fluctuations of  
carbon storage for each species when climate 
parameters within the dynamic model were 
set following future scenarios as described in 
Intergovernmental Panel on Climate Change 
[IPCC] (2000). At first, the aboveground carbon 
storage for each tree species were relatively 

stable when the model was run based on the 
“constant year 2000 concentrations” scenario, 
where the assumption was a 0.6°C temperature 
increase and about 20% precipitation decrease. 
Nevertheless, from that point forward, the 
aboveground carbon stored in the system 
generally started to decrease when the climate 
parameters were adjusted to more extreme 
scenarios, namely B1, AIT, A2, and A1FI.  This 
kind of  fluctuation may occur since at warmer 

Table 4. Statistical tests for actual approximation vs dynamic modeling of  C storage

Species Group comparison
t-test at 95% confidence interval

Mean SE 
Mean DF t-table t-value p-value r

Myristica sp. Actual proxy 839 51 397 1.985 0.46 0.647 0.99Dynamic modeling 806 50

Palaquium sp. Actual proxy 754 45 397 1.985 0.47 0.639 0.99Dynamic modeling 725 44
Syzygium sp. Actual proxy 1019 60 397 1.985 0.48 0.634 0.99

Figure 6. Actual approximation vs dynamic modeling of  C storage at baseline condition
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temperature and lower precipitation compared 
to normal condition, broadleaf  trees tend to 
decrease their photosynthetic productivity 
while increase littering pace to sustain their 
metabolism equilibrium which eventually 
hamper their growth and reduce carbon storage 
capacity (Heimann & Reichstein, 2008; Omeja, 
Obua, Rwetsiba, & Chapman, 2012; Wang, 
Duan, & Zhang, 2012).

To sum up, the detailed projections of  
Intergovernmental Panel on Climate Change 
[IPCC] (2000) climate scenarios on carbon 
storage for each species from Figure 7, 8 and 
9 are shown in Table 5. This table,  apparently 
describes that future rise in temperature and 
decrease in precipitation rate will reduce carbon 
storage capacity for all species. Furthermore, 

climate change will cause the largest impact in 
scenario A1F1 where there is 4°C increase in 
temperature range coupled with 20% reduction 
in precipitation. At this scenario, aboveground 
carbon stored in the trees from species of  
Myristica sp., Palaquium sp., and Syzygium sp. 
will decrease approximately 17.213%, 17.216% 
and 16.062% respectively during 200 years of  
simulation period.

Figure 10 shows the projection of  C storage, 
derived from Table 4. It is clearly shown that 
Myristica sp., Palaquium sp., and Syzygium sp. 
are becoming more vulnerable when climate 
scenario worsens. Moderate climate change 
scenarios, such as B1 and A1T, have already 
brought significant statistical deviation to all 
of  those species. In addition to this, looking at 

Figure 7. Projection of  future climate change scenarios (Constant year 2000 concentrations, 	 B1, A1T, A2, 
A1F1) on carbon storage of  Myristica sp. for 200 years simulation period

Myristica Myristica

Myristica Myristica

Myristica
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the more extreme climate scenario of  A2 and 
A1F1, it seems that Syzygium sp. has the lowest 
decrease in carbon storage, while Palaquium sp. 
tends to produce the highest rate of  decrease 
compared to the two other trees species. This 
finding is in agreement with several previous 
studies which have showed that the growth 
and productivity of  many broadleaf  trees with 
the lowest wood density value among their 
corresponding groups, is more vulnerable 
when temperature becomes warmer (Bennett 
et al., 2013; Coops & Waring, 2011; Subedi 
& Sharma, 2013; Hu, Su, Li, Li, & Ke, 2015). 
Taking into account of  this notion, compared 
to Myristica sp. and Syzygium sp. (Table 5, Figure 
3), Palaquium sp. has the lowest range of  wood 
density with only 0.33 – 0.56 gr/cm3 in contrast 
with Syzygium sp. that has the highest range of  
wood density with about 0.54 – 0.80 gr/cm3.

This study noted that although the 

simulation findings may provide a feasible 
approach to analyze model dynamics, however, 
it should be kept in mind that the simulation 
aboveground carbon storage on various climate 

change scenarios are complex flow processes. 
The users may improve the accuracy of  the 
dynamic model by appropriately considering 
the possible shortcomings, particularly in 
regard to tree growth calculation. Looking at 

the periodical annual increment of each tree 
species (Table 1), it seems that the growth rate 

are too slow and there is no obvious annual 
increment difference among them. The PAI for 

Palaquium sp. is only limited to 0.22 – 0.41 cm/
year, while Myristica sp. and Syzygium sp. is about 
0.21 – 0.43 cm/year. Those relatively small annual 
increments have also been reported by other 
studies, such as Santoso (2008), and Wahjono and 
Anwar (2008), who conducted measurements 
on permanent sample plots (PSPs) in 199 
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Figure 8. Projection of  future climate change scenarios (Constant year 2000 concentrations, 	 B1, A1T, A2, 
A1F1) on carbon storage of  Palaquium sp. for 200 years simulation period

Palaquium
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Palaquium

Palaquium
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forest consessions across Indonesia. Although 
the use of  tree growth data obtained from 
permanent sample plots (PSPs) of  other 
studies, as mentioned in the methodology 
of  this study, may inflict bias, however, this 
kind of  approach should be considered as an 
acceptable alternative because detecting trends 
in tree growth over natural forest stands is not 
so simple (Bowman, Brienen, Gloor, Phillips, 
& Prior, 2013). In practice, measuring tree 
growth in PSPs of  natural forest are indeed 
not only very time-consuming to conduct, but 
also highly logistically demanding since they 
are often located in remote species rich forets 
areas (Bowman et al., 2013; Weiskittel, Hann, 
Kershaw, & Vanclay, 2011).

IV. CONCLUSION
From the previous discussion, the 

following conclusions can be derived. When 
the dynamic simulation was run the five 

IPCC’s climate change scenarios (Constant 
year 2000 concentrations, B1, A1T, A2, and 
A1F1) for a simulation period of  200 years, 
the aboveground carbon stored in tree species 
of  Myristica sp., Palaquium sp., and Syzygium sp. 
will generally decrease. The moderate climate 
change scenarios, such as B1 and A1T, have 
already brought significant statistical deviation 
to all of  those tree species. At the worst level 
of  scenario A1F1 (4°C temperature increase 
coupled with 20% reduction in precipitation), 
the Palaquium sp. may suffer from the highest 
degree of  reduction of  aboveground carbon 
storage with about 17.216% below its normal 
value. The Palaquium sp. has the lowest range 
of  wood density with  only 0.33-0.56 gr/cm3 

compared to Myristica sp. and Syzygium sp. The 
study concludes that climate negative feedbacks 
should be considered to ensure the accuracy 
of  long term forest carbon accounting under 
future climate uncertainties.

Figure 9. Projection of  future climate change scenarios (Constant year 2000 concentrations, 	 B1, A1T, A2, 
A1F1) on carbon storage of  Syzygium sp. for 200 years simulation period

Syzygium Syzygium

Syzygium Syzygium

Syzygium
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