Autor(s): Dwi Astiani, Burhanuddin Burhanuddin, Lisa M. Curran, Mujiman Mujiman, Ruspita Salim
DOI: 10.20886/ijfr.2017.4.1.15-25


Currently, tropical peatland forests are under considerable pressure because of increasing deforestation and degradation of forests. In Kalimantan, degradation and deforestation of peatland forests are driven primarily by industrial logging,  expansion of agricultural activities through primarily conversion of forests to agricultural land and oil palm plantations. By the establishment of intensive drainage, it can induce wildfires in peatland. Unmanaged drainage ditches will alter water table levels within the site adjacent to the drainage including to surrounding peatland forest. Water table assessments were conducted before and after peatland drainage on 2007/2009 and 2012/2015 in Kubu Raya, West Kalimantan. This paper studies the effect of drainage ditches into the peatland water table. Results show the establishment of drainage ditches on this peatland landscape lowered the water table by more than 3 times from ~11.7 cm (SE = 1.5, n = 5) to ~37.3 cm (SE = 2.1 cm, n = 26). The effect on the water table was in drier months of  July-August.  Lowering the water table level altered worst the soil micro climate, peat temperature and peat water content. The results indicate the land use changes in peatland with the establishment of drainage affects peatland water table currently. In the area of less than 500 m from the drainage, the water level tends to lower toward the drainage feature. Therefore, recovery of peatland forests should be initiated by managing the landscape hydrology (i.e. water table) to restore the ecosystem and to protect the remaining peat swamp forest.


degraded peatland forest; drainage ditches; ecosystem restoration; soil micro climates; tropical peatland

Full Text:



Achard, F., Eva, H. D., Stibig, H., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J. (2002). Determination of the world’s humid tropical deforestation rates during the 1990’s methodology and results of the TREESII research programme. TREES Publications Series B, Research Report No.5.European Commission, Directorate General Joint Research Centre, Institute for Environment and Sustainability.

Achten, W. M. J., & Verchot, L. V. (2011). Implication of bio-diesel induced land-use changefor CO emissions: Case study in tropical America, Africa, and Southeast Asia. Ecology and Society, 16(4). doi://dx.doi.org/10.5751/ES-04403-160414.

Astiani, D. (2014). Bornean peatlands: Forest dynamics,land use and carbon flux. (Doctoral Dissertation). Graduate School of Yale University, USA. Retrieved from Proquest (UMI no 3580626)

Astiani, D., Hatta, M., & Fifian, F. (2015). Soil CO respiration along annual crops or landcover

type gradients on West Kalimantan degraded peatland forest. Procedia Environmental Sciences, 28,132141.doi://doi.org/10.1016/j.proenv.2015.07.019.

Astiani, D., Mujiman, Salim, R., Hatta, M., & Firwanta, D.D. (2015). Tropical peatland forest degradation: Effects on forest regeneration biomass, growth, mortality, and forest microclimate conditions. In I. Azhar R. Hartono, A. H. Iswanto, K. S. Hartini, A. Susilowati, D. Elfiati, Muhdi (Ed.), Proceeding the 6th International Symposium of Indonesian Wood Research Society (pp. 162–169). Indonesian Wood Research Society (IWoRS), Bogor.

Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A primer. Rome: UN FAO Forestr y Paper 134. Food and Agriculture Organization.

Carlson, K.M., Curran, L.M., Asner, G.P., Pittman, A.M., Trigg, S.N., & Adeney, J.M.(2013). Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nature Climate Change, 3(3), 283-287. doi:10.1038/nclimate1702

Carlson, K.M., Curran, L.M., Ratnasari, D., Pittman, A. M., Soares-Filho, B. S., Asner, G. P., … Rodrigues, H. . (2012). Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. PNAS 109, 7559–7564.

Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., … Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. doi:10.1007/s00442-005-0100-x

Clark, D.A., Brown, S., Kicklighter, D.W., Chambers, J.Q., Thomlinson, J.R., & Ni,J. (2001). Measuring net primary production in forests: Concepts and field methods. Ecological Applications, 11(2), 356–370. doi:10.2307/3060894

Curran, L. M., Caniago, I., Paoli, G. D., Astianti, D., Kusneti, M., Leighton, M., … Haeruman, H. (1999). Impact of El Niño and logging canopy tree recruitment in Borneo. Science, 286(5447), 2184–2188. doi://10.1126/ science.286.5447.2184

Eva, H., Carboni, S., Achard, F., Stach, N., Durieux, L., Faure, J.-F., & Mollicone, D. (2010). Monitoring forest areas from continental to territorial levels using a sample of medium spatial resolution satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 65(2), 191–197. doi:10.1016/j. isprsjprs.2009.10.008

Feeley, K.J., Davies, S.J., Ashton, P.S., Bunyavejchewin, S., Supardi, M.N.N., Kassim, A. R., … Chave, J. (2007). The role of gap phase processes in the biomass dynamics of tropical forests.Proceedings. Biological Science., 274(1627), 2857– 2864. doi:10.1098/rspb.2007.0954

Field, R. D., Werf, G. R. van der, & Shen, S. S. P. (2009). Human amplification of droughtinduced biomass burning in Indonesia since 1960. Nature Geoscience, 2, 185–188. doi:10.1038/ngeo443

Hansen, A. J., Neilson, R. P., Dale, V. H., Flather, C. H., Iverson, L.R., Currie, D.J., … Bartlein, P.J. (2001). Global change in forests: responses of species, communities, and biomass. BioScience, 51(9), 765. doi:10.1641/00063568(2001)051[0765:GCIFRO]2.0.CO;2

Hergoualc’hK., & Verchot, L. V. (2011). Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Global Biogeochemical Cycles, 25, 1–13. doi:10.1029/2009GB003718

Holden, J. (2005). Peatland hydrology and carbon release: why small-scale process matters. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Science, 363, 2891–2913. doi:10.1098/rsta.2005.1671

Hooijer, A., Silvius, M., Wösten, H., & Page, S.(2006). PEAT-CO, Assessment of CO emissions from drained peatlands in SE Asia. Delft Hydraulics report Q3943.

Jones, H. P., & Schmitz, O. J. (2009). Rapid recovery of damaged ecosystems. PLos ONE, 4(5), e5653. doi:10.1371/journal.pone.0005653

Kato, R., Tadak, Y., & Ogawa, H. (1978). Plant biomass and growth increment studies in Pasoh forest. Malaysia Nature Journal, 30, 211–224.

Laiho, R., & Laine, J. (1997). Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. Forest Ecology and Management, 93(1–2), 161–169. doi:10.1016/S0378-1127(96)03916-3

Laiho, R., Vasander, H., Penttilä, T., & Laine, J. (2003). Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Global Biogeochemical Cycles, 17(2), 1-17. http:10.1029/2002GB002015

Langner, A., Miettinen, J., & Siegert, F. (2007). Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biology, 13(11), 2329–2340. doi:10.1111/j.1365-2486.2007.01442.x

Langner, A., & Siegert, F. (2008). Spatiotemporal fire occurrence in Borneo over a period of 10 years. Global Change Biology, 15(1),48–62. doi:10.1111/j.1365-2486.2008.01828.x

Miettinen, J., Shi, C., & Liew, S. C. (2011). Influence of peatland and land cover distribution on fire regimes in insular Southeast Asia. Regional Environmental Change, 11(1), 191–201. doi:10.1007/s10113-010-0131-7

Miettinen, J., Shi, C., & Liew, S. C. (2016). Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation, 6, 67–78. doi:10.1016/j. gecco.2016.02.004

Minkkinen, K., Korhonen, R., Savolainen, I., & Laine, J. (2002). Carbon balance and radiative forcing of Finnish peatlands 1900–2100 – the impact of forestry drainage. Global Change Biology, 8(8), 785–799. doi:10.1046/j.1365-2486.2002.00504.x

Mitsch, W., & Gosselink, J. (1993). Wetlands. New York: Van Nostrand Reinhold.

Page, S., Hoscilo, A., & Tansey, K. (2008). Wildfire effects on tropical peatlands. Geophysical Research Abstracts, 10.

Paoli, G. D., & Curran, L. M. (2007). Soil nutrients limit fine litter production and tree growth in mature lowland forest of Southwestern Borneo. Ecosystems, 10(3), 503–518. doi:10.1007/s10021-007-9042-y

Paoli, G. D., Curran, L. M., & Slik, J. W. F. (2008).Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in Southwestern Borneo. Ecologia,155(2), 287–299. doi:10.1007/s00442-007- 0906-9

Ramankutty, N., Gibbs, H.K., Achard, F., Defries, R., Foley, J.A., & Houghton, R.A. (2007). Challenges to estimating carbon emissions from tropical deforestation. Global Change Biology, 13(1), 51–66. doi:10.1111/j.1365-2486.2006.01272.x

Someshwar, S., Boer, R., & Conrad, S. (2009). Managing peatland fire risk in central Kalimantan, Indonesia. World Resources Report, Washington DC. Waddington, J. M., & Roulet, N. T. (1997). Groundwater flow and dissolved carbon movement in a boreal peatland. Journal of Hydrology, 191(1–4), 122–138. doi:10.1016/ S0022-1694(96)03075-2

Werf, G.R. van der, Morton, D.C., DeFries, R.S., Olivier, J.G.J., Kasibhatla, P.S., Jackson, R.B., … Randerson, J.T. (2009). CO2 emissionsfrom forest loss. Nature Geoscience, 2, 737–738. doi:10.1038/ngeo671

Werf, G.R. van der, Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., … Leeuwen, T. T. van. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry Physics Discussion, 10, 11707–11735. doi:10.5194/acp-10-11707-2010


  • There are currently no refbacks.