Autor(s): Nunung Puji Nugroho
DOI: 10.20886/ijfr.2014.1.2.89-107


Reliable information on total tree height (H) is fundamental in forest resource management and forest ecological studies, including in forest biomass assessment. Adding an H variable can improve the performance of the biomass allometric equations by reducing the average deviation significantly. However, measuring H is relatively complex, less accurate, time consuming, and expensive. Thus, H is only measured for sampled trees within the plots, whilst diameter at breast height (DBH) is commonly measured for each tree during the forest inventory. The missing H information is usually estimated based on a stand-specific allometric relationship between H and DBH (H-D model) constructed from sampled trees. Despite extensive studies on H-D model for boreal forests and for single-species/plantation forests, few studies have focused on tropical forests. Furthermore, relationships for peat swamp forest tree species, and especially those in Indonesia, have not been widely published. Thus, the objective of this study was to develop site-specific H-D models for tropical peat swamp forests using linearized and non-linear regression functions. The results indicated that the non-linear models outperformed the linearized models based on the statistical parameters and the biological criteria. The modified logistic function (Model 7) is recommended for estimating H in the study area as it has comparable model performances to the exponential function (Model 6) and passed the point diameter-height of (0, 1.3). However, all five non-linear models performed equally well and the differences between them were trivial. Further improvements are needed to improve the accuracy, the predictive ability and the geographical applicability of the models by grouping the species, adding stand variables and (or) using advanced techniques of mixed-effect modelling. In addition, model validation should be carried out prior to their application by collecting a new dataset from the forest being studied.

Full Text:



Aguirre, O., Hui, G., Gadow, K. V., & Jiménez, J.(2003). An analysis of spatial forest structure using neighbourhood-based variables. Forest Ecology and Management, 183(1-3), 137–145.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

Akindele, S. O., & LeMay, V. M. (2006). Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria. Forest Ecology and Management, 226(1-3), 41–48.

Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684–1694.

Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).

Brown, S. (2002). Measuring carbon in forests:current status and future challenges. Environmental Pollution, 116(3), 363–372.

Brown, S., Lugo, A. J. R., & Gillespie, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35, 881–902.

Budhathoki, C. B., Lynch, T. B., & Guldin, J. M. (2008). A mixed-effects model for the dbh height relationship of shortleaf pine (Pinus echinata Mill.). Southern Journal of Applied Forestry, 32(1), 5–11.

Bullock, S. H. (2000). Developmental patterns of tree dimensions in a neotropical deciduous forest. Biotropica, 32(1), 42–52.

Calama, R., & Montero, G. (2004). Interregional nonlinear height diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 34(1), 150– 163.

Castedo Dorado, F., Diéguez-Aranda, U., Barrio Anta, M., Sánchez Rodrígue, M., & von Gadow, K. (2006). A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain. Forest Ecology and Management, 229(1-3), 202–213.

Chave, J., Andalo, C., Brown, S. M., Cairns, J., Chambers, D., Eamus, H., … Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99.

Cobb, D. F., O’hara, K. L., & Oliver, C. D. (1993). Effects of variations in stand structure on development of mixed-species stands in eastern Washington. Canadian Journal of Forest Research, 23(1), 545–552.

Cole, T. G., & Ewel, J. J. (2006). Allometric equations for four valuable tropical tree species. Forest Ecology and Management, 229(1-3), 351–360.

Crow, T. R. (1978). Common Rregressions to estimate tree biomass in tropical stands. Forest Science, 24, 110–114.

Curtis, R. O. (1967). Height-Diameter and HeightDiameter-Age EquationsFor SecondGrowth Douglas-Fir,,. Forest Science,13, 365–375.

Ditzer, T., Glauner, R., Förster, M., Köhler, P., & Huth, A. (2000). The process-based stand growth model Formix 3-Q applied in a GIS environment for growth and yield analysis in a tropical rain forest. Tree Physiology, 20(5-6), 367–381.

Djomo, A. N., Ibrahima, A., Saborowski, J., & Gravenhorst, G. (2010). Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa, ,. Forest Ecology and Management, 260(10), 1873–1885.

Fang, Z., & Bailey, R. L. (1998). Height-diameter models for tropical forests on Hainan Island in southern China. Forest Ecology and Management, 110(1-3), 315–327.

Fehrmann, L., & Kleinn, C. (2006). General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in central Europe,. Forest Ecology and Management, 236(23), 412–421.

Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., … Lloyd, J. (2011). Height-diameter allometry of tropical forest trees. Biogeosciences, 8(5), 1081–1106.

Gower, S. T., Kucharik, C. J., & Norman, J. M. (1999). Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 70, 29–51.

Hara, T., Kimura, M., & Kikuzawa, K. (1991). Growth patterns of tree height and stem diameter in populations of Abies veitchii, A. mariesii and Betula ermanii. Journal of Ecology, 79(4), 1085–1098.

Huang, S., Price, D., & Titus, S. J. (2000). Development of ecoregion-based height–diameter models for white spruce in boreal forests. Forest Ecology and Management,, 129(13), 125–141.

Huang, S., & Titus, S. J. (1993). An index of site productivity for uneven-aged or mixedspeciesstands. Canadian Journal of Forest Research, 23(3), 558–562.

Huang, S., Titus, S. J., & Wiens, D. P. (1992). Comparison of nonlinear height–diameter functions for major Alberta tree species. Canadian Journal of Forest Research, 22(9), 1297–1304.

Istomo. (2002). Kandungan fosfor dan kalsium serta penyebarannya pada tanah dan tumbuhan hutan rawa gambut: studi kasus di Wilayah Bagian Kesatuan Pemangkuan Hutan Bagan, Kabupaten Rokan Hilir, Riau (Ph.D thesis). Institut Pertanian Bogor, Bogor.

Jiang, L., & Li, Y. (2010). Application of non-linear mixed effects modelling approach in tree height prediction. Journal of Computers, 5(10), 1575–1581.

Ketterings, Q. M., Coe, R., Noordwijk, M. van, Ambagau’, Y., & Palm, C. A. (2001). 2001. Reducing uncertainty in the use of allometric biomass equations for predicting aboveground tree biomass in mixed secondary forests. Forest Ecology and Management, 146(13), 199–209.

Krisnawati, H., Wang, Y., & Ades, P. K. (2010). Generalized height-diameter models for Acacia mangium Willd. plantation in South Sumatra. Journal of Forestry Research, 7(1), 1–19.

Larsen, D. R., & Hann, D. W. (1987). Height–diameter equations for seventeen tree species in southwest Oregon (Research Paper 49). Oregon: Forest Research Lab. Oregon State University.

Lee, Y. J., Coble, D. W., Pyo, J. K., Kim, S. H., Lee, W. K., & Choi, J. K. (2009). A Mixed-effects Height-Diameter Model for Pinus densiflora Trees in Gangwon Province, Korea. Journal of Korean Forestry Society, 98(2), 178–182.

Lei, Y. C., & Zhang, S. Y. (2004). Features and partial derivatives of Bertalanffy-Richards growth model in forestry. Nonlinear Analysis: Modelling and Control, 9(1), 65–73.

Litton, C. M., & Kauffman, J. B. (2008). Allometric models for predicting above-ground biomass in two widespread woody plants in Hawaii. Biotropica, 40(3), 313–320.

Nelson, B. W., Mesquita, R., Pereira, J. L. G., Souza, S., de Souza, S. G. A., Batista, G. T., & Couto, L. B. (1999). Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management, 117(1-3), 149–167.

Nogueira, E. M., Nelson, B. W., Fearnside, P. M., França, M. B., & Oliveira, Á. C. A. d. (2008). Tree height in Brazil’s “arc of deforestation”: Shorter trees in south and southwest Amazonia imply lower biomass. Forest Ecology and Management, 255(7), 2963–2972.

Okuda, T., Suzuki, M., Numata, S., Yoshida, K., Nishimura, S., Adachi, N., … Hashim, M. (2004). Estimation of above-ground biomass in logged and primary lowland rainforests using 3-D photogrammetric analysis. Forest Ecology and Management, 203(1-3), 63–75.

Overman, J. P. M., Witte, H. J. L., & Saldarriaga, J. G. (1994). Evaluation of regression modelsfor above-ground biomass determination in Amazon rainforest. Journal of Tropical Ecology, 10(02): 207–218.

Parresol, B. R. (1992). Baldcypress height–diameter equations and their prediction confidence intervals. Canadian Journal of Forest Research, 22(9), 1429–1434.

Parresol, B. R. (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45, 573–593.

Paulo, J., Tomé, J., & Tomé, M. (2011). Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands. Annals of Forest Science, 68(2), 295–309.

Peng, C., Zhang, L., & Liu, J. (2001). Developing and validating nonlinear height-diameter models for major tree species of ontarios boreal forests. Northern Journal of Applied Forestry, 18(3), 87–94.

Peng, C., Zhang, L., Zhou, X., Dang, Q., & Huang, S. (2004). Developing and evaluating tree height-diameter models at three geographic scales for black spruce in Ontario, Northern. Journal of Applied Forestry, 21(2), 83–92.

Pilli, R., Anfodillo, T., & Carrer, M. (2006). Towards a functional and simplified allometry for estimating forest biomass. Forest Ecology and Management, 237(1-3), 583–593.

Ratkowsky, D. A. (1990). Handbook of Nonlinear Regression Models. New York, USA: Marcel Dekker.

Ratkowsky, D. A., & Reedy, T. J. (1986). Choosing near-linear parameters in the four parameter logistic model for radioligand and related assays. Biometrics, 42(3), 575– 582.

Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10(2), 290–301.

Saldarriaga, J. G., West, D. C., Tharp, M. L., & Uhl, C. (1988). Long-Term Chronosequence of Forest Succession in the Upper Rio Negro of Colombia and Venezuela. Journal of Ecology, 76(4), 938–958.

Sánchez, C. A. L., Varela, J. G., Dorado, F. C., Alboreca, A. R., Soalleiro, R. R., González, J. G. Á., & Rodríguez, F. S. (2003). A height- diameter model for Pinus radiata D. Don in Galicia (Northwest Spain). Annals of Forest Science, 60(3), 237–245.

SAS Institute Inc. (2009). JMP® 8 User Guide. Cary, NC: SAS Institute Inc.

Schnute, J. (1981). A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences, 38(9), 1128–1240.

Segura, M., & Kanninen, M. (2005). Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica, 37(1), 2–8.

Sharma, M., & Parton, J. (2007). Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management, 249(3), 87–198.

Sharma, M., & Zhang, S. Y. (2004). Height–diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scandinavian Journal of Forest Research, 19(5), 442–451.

Snowdon, P. (1991). A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forest Research, 21, 720–724.

Soares, P., & Tomé, M. (2002). Height–diameter equation for first rotation eucalypt plantations in Portugal. Forest Ecology and Management, 166(1-3), 99–109.

Stout, B. B., & Shumway, D. L. (1982). Site Quality Estimation Using Height and Diameter. Forest Science, 28(3), 639–645.

Temesgen, H., & Gadow, K. v. (2004). Generalized height–diameter models—an application for major tree species in complex stands of interior British Columbia. European Journal of Forest Research, 123(1), 45–51.

Temesgen, H., Hann, D. W., & Monleon, V. J. (2007). Regional height–diameter equations for major tree species of southwest Oregon. Western Journal of Applied Forestry, 22, 213–219.

Temesgen, H., Monleon, V. J., & Hann, D. W. (2008). Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests. Canadian Journal of Forest Research, 38(3), 553–565.

Thomas, S. C. (1996). Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees. American Journal of Botany, 83(5), 556–566.

Uhl, C., Buschbacher, R., & Serrao, E. A. S. (1988). Abandoned Pastures in Eastern Amazonia. I. Patterns of Plant Succession. Journal of Ecology, 76(3), 663–681.

Vanclay, J. K. (1992). Assessing site productivity in tropical moist forests: a review. Forest Ecology and Management, 54, 257–287.

Vanclay, J. K. (1994). Modelling Forest Growth and Yield. Wallingford, UK: CAB International.

VanderSchaaf, C. L. (2008). Stand level heightdiametermixed effects models: parameters fitted using loblolly pine but calibrated for sweetgum. In D. F. Jacobs & C. H. Michler (Eds.), Proceedings 16 Central Hardwoods Forest Conference, Vol. Gen. Tech. Rep. NRS-P-24. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station.

Verwer, C. C., & Meer, P. J. v. d. (2010). Carbon pools in tropical peat forest - Toward a reference value for forest biomass carbon in relatively undisturbed peat swamp forests in Southeast Asia. Wageningen, The Netherlands: Alterra-report 2108.

Wahyunto, Ritung, S., Suparto, & Subagjo, H.(2005). Sebaran Gambut dan Kandungan Karbon di Sumatera dan Kalimantan, Climate Change, Forests and Peatlands in Indonesia Project. Wetlands International-Indonesia Programme and Wildlife Habitat. Bogor: Wetlands InternationalIndonesia Programme and Wildlife Habitat Canada.

Wang, C. (2006). Biomass allometric equations for 10 co-occuring tree species in Chinese temperate forests. Forest Ecology and Management, 222, 9–16.

Wang, C. H., & Hann, D. W. (1988). Height–diameter equations for sixteen tree species in the central Willamette Valley of Oregon (Research Paper 51). Oregon: Forest Research Lab., Oregon State University.

Yamakura, T., Hagihara, A., S. Sukardjo, & Ogawa, H. (1986). . Above-Ground biomass of tropical rain forest stands in Indonesian Borneo. Plant Ecology, 68(2), 71–82.

Yang, R. C., Kozak, A., & Smith, J. H. G. (1978). The potential of Weibull-type functions as a flexible growth curves. Canadian Journal of Forest Research, 8, 424–431.

Yuancai, L., & Parresol, B. R. (2001). Remarks on height-diameter modeling (Research Note SRS-IO). Asheville, NC: United States Department of Agriculture, Forest Service, Southern Research Station.

Zeide, B. (1993). Analysis of Growth Equations. Forest Science, 39(3), 594–616.

Zhang, L. (1997). Cross-validation of non-linear growth functions for modelling tree heightdiameter relationships. Annals of Botany, 79, 251–257.

Zhang, L., Bi, H., Cheng, P., & Davis, C. J. (2004). Modeling spatial variation in tree diameter–height relationships, Forest Ecology and Management,. Forest Ecology and Management, 189(1-3), 317–329.

Zhou, X., Peng, C., Dang, Q.-L., Chen, J., & Parton, S. (2005). Predicting forest growth and yield in northeastern Ontario using the processbased model of TRIPLEX1.0. Canadian Journal of Forest Research, 35(9), 2268–2280.


  • There are currently no refbacks.