GROWTH PERFORMANCE OF THREE NATIVE TREE SPECIES FOR PULPWOOD PLANTATION IN DRAINED PEATLAND OF PELALAWAN DISTRICT, RIAU

Autor(s): Ahmad Junaedi
DOI: 10.20886/ijfr.2018.5.2.119-132

Abstract

The productivity of exotic species developed in pulpwood plantations in Indonesia (HTI-pulp) has been continuously decreasing.  On the other side, there is a possibility to develop several promising native tree species in peatland HTI-pulp plantations. However, less information is available on the performance of those native tree species for planting in peatland pulpwood plantation. This study evaluates the performances (survival rate, growth and yield) of three native trees [mahang (Macaranga pruinosa), skubung (Macaranga gigantea) and geronggang (Cratoxylum arborescens)] in drained peatland, in terms of suitability for pulpwood plantation. An experiment plot was established by planting three native tree species and krasikarpa (Acacia crassicarpa) in drained peatland at Pelalawan District, Riau. Survival, growth and yield variables were monitored frequently until 5.5 years after planting (YAP) and then were analyzed. Geronggang (survival rate = 80.0%) and mahang (survival rate = 65.6%) showed good survival rates at 5.5 YAP which were significantly (p<0.05) higher than that of krassikarpa (22.4%). Geronggang and mahang are relatively promising growth and yield in which height, diameter and yield increment until 5.5 YAP were 1.96 m/year and 2.31 m/year; 2.08 cm/year and 2.59 cm/year; 13.1 m3/ha/year and 21.4 m3/ha/year, respectively. Yet, those growths and yields were still significantly (p<0.05) lower than those of krasikarpa, probably due to unequal  seedling quality. These results indicated the potential of mahang and geronggang to be developed in peatland pulpwood plantations. However, tree improvement program is necessarily required for mahang and geronggang to initiate the development.

Keywords

Native tree species; pulpwood plantation; drained peatland; seedling quality

Full Text:

PDF

References

Aisah, S. S., Yusop, Z., Noguchi, S., & Abd Rahman, K. (2012). Rainfall partitioning in a young Hopea odorata plantation. Journal of Tropical Forest Science, 24(2), 147–161.

Al Adawi, A. O., Barnes, I., Khan, I. A., Al Subhi, A. M., Al Jahwari, A. A., Deadman, M. L., … Wingfield, M. J. (2013). Ceratocystis manginecans associated with a serious wilt disease of two native legume trees in Oman and Pakistan. Australasian Plant Pathology, 42, 179–193. https://doi.org/10.1007/s13313-012-0196-5

Amirta, R., Mukhdlor, A., Mujiasih, D., Septia, E., Supriadi, & Susanto, D. (2016). Suitability and availability analysis of tropical forest wood species for ethanol production : a case study in East Kalimantan. Biodiversitas, 17(2), 544–552. https://doi.org/10.13057/biodiv/d170222

Aprianis, Y. (2016). The opportunity of some alternative wood for pulp. In A. Hidayat, Sudarmalik, E. Novriyanti, H. H. Rachmat, & A. Wahyudi (Ed.), The Proceeding of Research Finding : Opputunities and Challanges of The Development of Environment and Forestry in Riau (pp. 1 - 12). Kuok: Balai Penelitian dan Pengembangan Teknologi Serat Tanaman Hutan.

Aprianis, Y. (2010). The possibility of Mahang wood for the alternative of pulpwood and paper. Buletin Hasil Hutan, 16(2), 141 - 149.

Astiani, D., Burhanuddin, Curran, L. M., Mujiman, & Salim, R. (2017). Effect of drainage ditches on water table level, soil conditions and tree growth odf degraded peatland foreats in West Kalimantan. Indonesian Journal of Forestry Research, 4(1), 15–25. https://doi.org/http://dx.doi.org/10.20886/ijfr.2017.4.1.15-25

Banjarbaru forestry Research Unit, FORDA, & Graham, L. L. B. (2014). Tropical Peat Swamp Forest Silviculture in Central Kalimantan A series of five research papers. Banjarbaru. Retrieved from http://www.forda-mof.org/files/7._Tropical_Peat_Swamp_Forest_Silviculture_in_CK_Reports_S6.pdf

Bare, M. C., & Ashton, M. S. (2015). Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New Forests. https://doi.org/10.1007/s11056-015-9519-z

Blackham, G. V, Webb, E. L., & Corlett, R. T. (2014). Forest Ecology and Management Natural regeneration in a degraded tropical peatland , Central Kalimantan , Indonesia : Implications for forest restoration. Forest Ecology and Management, 324, 8–15. https://doi.org/10.1016/j.foreco.2014.03.041

Calvo-Alvarado, J. C., Arias, D., & Richter, D. D. (2007). Early growth performance of native and introduced fast growing tree species in wet to sub-humid climates of the Southern region of Costa Rica. Forest Ecology and Management, 242, 227–235. https://doi.org/10.1016/j.foreco.2007.01.034

Carpenter, F. L., Nichols, J. D., Pratt, R. T., & Young, K. C. (2004). Methods of facilitating reforestation of tropical degraded land with the native timber tree , Terminalia amazonia, 202, 281–291. https://doi.org/10.1016/j.foreco.2004.07.040

Cole, T. G., Yost, R. S., Kablan, R., & Olsen, T. (1996). Growth potential of twelve Acacia species on acid soils in Hawaii, 80, 175–186.

Da˜nobeytia, F. R., Huayllani, M., Michi, A., Ibarra, F., Loayza-Muro, R., Vazquez, T., … Garcia, M. (2015). Reforestation with four native tree species after abandoned gold mining in the Peruvian Amazon. Ecological Engineering, 85, 39–46. https://doi.org/10.1016/j.ecoleng.2015.09.075

de Beer, Z. . ., Duong, T. . ., Barnes, I., Wingfield, B. D., & Wingfield, M. J. (2014). Redefining Ceratocystis and allied genera, 79, 187–219. https://doi.org/10.1016/j.simyco.2014.10.001

Dong, T. L., Beadle, C. L., Doyle, R., & Worledge, D. (2014). Site conditions for regeneration of hopea odorata in natural evergreen dipterocarp forest in Southern Vietnam. Journal of Tropical Forest Science, 26(4), 532–542.

Farias, J. De, Schwantes, B., Carvalho, L. De, Silva, R., André, F., Ribeiro, F., … Marimon-junior, B. H. (2016). Forest Ecology and Management Survival and growth of native Tachigali vulgaris and exotic Eucalyptus urophylla  Eucalyptus grandis trees in degraded soils with biochar amendment in southern Amazonia. Forest Ecology and Management, 368, 173–182. https://doi.org/10.1016/j.foreco.2016.03.022

Francis, A., Beadle, C., Glen, M., Mohammed, C., Beadle, C., Puspitasari, D., … Mardai, U. (2014). Disease progression in plantations of Acacia mangium affected by red root rot (Ganoderma philippii). Forest Pathology, 44(6), 447–459. https://doi.org/10.1111/efp.12141

Fuentes-Ramirez, A., Pauchard, A., Cavieres, L. ., & Garcia, R. . (2011). Survival and growth of Acacia dealbata vs . native trees across an invasion front in. Flora, 261, 1003–1009. https://doi.org/10.1016/j.foreco.2010.12.018

Gonçalves, J. L. M., Alvares, C. A., Higa, A. R., Silva, L. D., Alfenas, A. C., Stahl, J., … Epron, D. (2013). Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. Forest Ecology and Management, 301, 6–27. https://doi.org/10.1016/j.foreco.2012.12.030

Gonçalves, J. L. M., Stape, J. L., Laclau, J. P., Bouillet, J. P., & Ranger, J. (2008). Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: The Brazilian experience. Southern Forests, 70(2), 105–118. https://doi.org/10.2989/SOUTH.FOR.2008.70.2.6.534

Graham, L. L. B., Turjaman, M., & Page, S. E. (2013). Shorea balangeran and Dyera polyphylla ( syn . Dyera lowii ) as tropical peat swamp forest restoration transplant species : effects of mycorrhizae and level of disturbance. Wetland Ecol Manage. https://doi.org/10.1007/s11273-013-9302-x

Griess, V. C., & Knoke, T. (2011). Can native tree species plantations in Panama compete with Teak plantations ? An economic estimation. New Forests, 41, 13–39. https://doi.org/10.1007/s11056-010-9207-y

Gunawan, H. (2013). PEATLAND RESTORATION IN RIAU BIOSPHERE RESERVE , INDONESIA. In Proceeding of National Workshop of Biology (pp. 29–37). Medan: University of North Sumatra.

Haggar, J. P., Briscoe, C. B., & Butterfield, R. P. (1998). Native species : a resource for the diversification of forestry production in the lowland humid tropics.

Herath, P., Beauseigle, S., Dhillon, B., Ojeda, D. I., Bilodeau, G., Isabel, N., … Feau, N. (2016). Anthropogenic signature in the incidence and distribution of an emerging pathogen of poplars. Biological Invasions, 18(4), 1147–1161. https://doi.org/10.1007/s10530-015-1051-8

Hilwan, I., Setiadi, Y., & Rachman, H. (2013). Evaluation of Some Dipterocarp Species in Revegetation Areas of PT . Kitadin , East Kalimantan. Jurnal Silvikultur Tropika, 4(2), 108–112.

Husnain, H., Wigena, I. G. P., Dariah, A., Marwanto, S., Setyanto, P., & Agus, F. (2014). CO 2 emissions from tropical drained peat in Sumatra , Indonesia. Mitig Adapt Strateg Glob Change. https://doi.org/10.1007/s11027-014-9550-y

Junaedi, A. (2016). The potency of three native tree species to be planted in peatland of Riau. In A. Hidayat, Sudarmalik, E. Novriyanti, H. H. Rachmat, & A. Wahyudi (Ed.), The Proceeding of Research Finding : Opputunities and Challanges of The Development of Environment and Forestry in Riau (pp. 1 - 12). Kuok: Balai Penelitian dan Pengembangan Teknologi Serat Tanaman Hutan

Junaedi, A., & Aprianis, Y. (2010). The wood properties of geronggang as pulpable alternative for planted on Peat Forest. Buletin Hasil hutan, 16(3), 153- 161.

Kawaletz, H., Molder, I., Zerbe, S., Annighofer, P., Terwei, A., & Ammer, C. (2013). Exotic tree seedlings are much more competitive than natives but show underyielding when growing together. Journal of Plant Ecoogy, 6(4), 305–315. https://doi.org/10.1093/jpe/rts044

Kenzo, T., Yoneda, R., Matsumoto, Y., Azani, A. M., & Majid, M. N. (2011). Growth and photosynthetic response of four Malaysian indigenous tree species under different light conditions. Journal of Tropical Forest Science, 23(3), 271–281.

Lampela, M., Jauhiainen, J., Sarkkola, S., & Vasander, H. (2017). Promising native tree species for reforestation of degraded tropical peatlands. Forest Ecology and Management, 394, 52–63. https://doi.org/10.1016/j.foreco.2016.12.004

Leksono, B. (2016). The repetitive selection in Tropical tree species for self-provide of improved seedling. Bogor: FORDIA. Retrieved from https://www.researchgate.net/profile/Budi_Leksono/publication/308030856_Seleksi_Berulang_Pada_Spesies_Tanaman_Hutan_Tropis_Untuk_Kemandirian_Benih_Unggul/links/57d79ef608ae6399a395b2bf/Seleksi-Berulang-Pada-Spesies-Tanaman-Hutan-Tropis-Untuk-Kemandirian-B

Lim, T. Y., Lim, Y. Y., & Yule, C. M. (2014). Bioactivity of leaves of Macaranga species in Tropical Peat Swamp and Non-Peat Swamp environments. Journal of Tropical Forest Science, 26(1), 134–141.

Lombardero, M. J., Alonso-rodríguez, M., & Roca-posada, E. P. (2012). Forest Ecology and Management Tree insects and pathogens display opposite tendencies to attack native vs . non-native pines, 281, 121–129. https://doi.org/10.1016/j.foreco.2012.06.036

Masota, Abel Malyango , Eliakimu Zahabu, Rogers Ernest Malimbwi, O. M. B., & Eid, T. H. (2014). Volume Models for Single Trees in Tropical Rainforests in Tanzania. Journal of Energy and Natural Resources, 3(5), 66. https://doi.org/10.11648/j.jenr.20140305.12

Mawazin, & Susilo, A. (2016). The growth of planted pulai ( Alstonia scholaris ) on ex-coal mine land in East Kalimantan. Pros Sem Nas Masy Biodiv Indon, 2(2), 237–242. https://doi.org/10.13057/psnmbi/m020220

Ministry of Environment and Forestry of Indonesia. (2016). The statistics of Ministry of Environment and Forestry 2015. Jakarta.

Ministry of Industy of Indonesia. (2016). 2017, The repubic of Indonesia is the number six of paper producer of the world. Pikiran Rakyat.

Mojiol, A. R., Wahyudi, & Nasly, N. (2014). Growth Performance of Three Indigenous Tree Species ( Cratoxylum arborescens Vahl . Blume , Alstonia spathulata Blume , and Stemonurus scorpioides Becc .) Planted at Burned Area in Klias Peat Swamp Forest , Beaufort , Sabah , Malaysia. Journal of Wetland Environmental Management, 2(1), 66–78.

Muiambo, A. M. (2016). Growth and productivity of some selected indigenous tree species in monoculture in Monogoro- Tanzania. Sokoine University of Agriculture.

Mulizane, M., Katsvanga, C., Nyakudya, I., & Mupangwa, J. (2005). The Growth Performance of Exotic and Indigenous Tree Species in Rehabilitating Active Gold Mine Tailings Dump at Shamva mine in Zimbabwe. J. Appl.Sci.Environ.Mgt., 9(2), 57–59. Retrieved from www.bioline.org.br/ja

Nath, C. D., Schroth, G., & Burslem, D. F. R. P. (2016). Agriculture , Ecosystems and Environment Why do farmers plant more exotic than native trees ? A case study from the Western Ghats , India. “Agriculture, Ecosystems and Environment,” 230, 315–328. https://doi.org/10.1016/j.agee.2016.05.013

Nurcan, Refdanil, Sribudiani, E., & Sudarmalik. (2014). Selling price of Acacia Llog analisys by approaching the production cost of plantation forest. Jurnal Analisis Kebijakan Kehutanan, 1(1), 1–13. Retrieved from

https://jom.unri.ac.id/index.php/JOMFAPERTA/article/viewFile/1873/1836

Nurulita, Y., Adetutu, E. M., Gunawan, H., Zul, D., & Ball, A. S. (2016). Agriculture , Ecosystems and Environment Restoration of tropical peat soils : The application of soil microbiology for monitoring the success of the restoration process. “Agriculture, Ecosystems and Environment,” 216, 293–303. https://doi.org/10.1016/j.agee.2015.09.031

Oba, G., Nordal, I., Stenseth, N. C., Stave, J., Bjora, C. S., Muthondeki, J. K., & Bii, W. K. A. (2001). Growth performance of exotic and indigenous tree species in saline soils in Turkana , Kenya species in saline soils in Turkana , Kenya. Journal of Arid Environments, 47, 499–511. https://doi.org/10.1006/jare.2000.0734

Onefeli, A. O., & Adesoye, P. O. (2014). Early Growth Assessment of Selected Exotic and Indigenous Tree Species in Nigeria, 5(1), 45–51.

Rahayu, S., Nurjanto, H. H., & Pratama, R. . (2015). The characteristics of Cerocysris sp. as the agent of stem rot disease in Acacia decurens and its diseases status in National Park of Gunung Merapi, Yogyakarta. Jurnal Ilmu Kehutanan, 9(2), 94–104.

Raphael, M. B., Yan, K., Yap, V. B., & Tan, H. T. W. (2015). Comparing germination success and seedling traits between exotic and native pioneers : Cecropia pachystachya versus Macaranga gigantea. Plant Ecology, 216, 1019–1027. https://doi.org/10.1007/s11258-015-0486-4

Rimbawanto, A. (2014). Managing root rot diseases in Acacia mangium. In Seminar Nasional. Yogyakarta. Retrieved from http://www.forda-mof.org/files/Mengelola_Penyakit_Busuk_Akar_-_Anto_R.pdf

Rotinsulu, J. M., Indrayanti, L., & Sampang. (2016). Effects of inundation depth on growth of 14 plant species on peatland in Pulang Pisau Regency. TWJ, 2(2), 1–9.

Saito, H., Shibuya, M., Tuah, S. J., Turjaman, M., Takahashi, K., Jamal, Y., … Limin, S. H. (2005). Initial screening of fast-growing species being tolerant of dry tropical peatlands in Central Kalimantan, Indonesia. Journal of Forestry Research, 2(2), 1–10.

Schneider, T., Ashton, M. S., Montagnini, F., & Milan, P. P. (2013). Growth performance of sixty tree species in smallholder reforestation trials on Leyte , Philippines. New Forests. https://doi.org/10.1007/s11056-013-9393-5

Subiakto, A., Rachmat, H. H., & Sakai, C. (2016). Choosing native tree species for establishing man-made forest : A new perspective for sustainable forest management in changing world. Biodiversitas, 17(2), 620–625. https://doi.org/10.13057/biodiv/d170233

Sudomo, A., & Mindawati, N. (2011). The Growth Of Manglieta glauca BI On Three Spacing and Three Kinds of Fertillizer at Kawalu Tasikmalaya , West Java. Tekno Hutan Tanaman, 4(3), 111–118.

Suhartati, Aprianis, Y., Pribadi, A., & Rochmayanto, Y. (2013). Study of Reduction Cycle Impact of Acacia crassicarpa A . Cunn Plantation to Production Value and Social Aspect. Jurnal Penelitian Hutan Tanaman, 10(2), 109–117.

Suhartati, Rahmayanti, S., Junaedi, A., & Nurrohman, E. (2012). Distrubution and site requirements of several alternative pulpwood species in Riau. (N. Mindawati, P. Pamoengkas, & U. Sitisna, Eds.) (I). Jakarta: Badan Litbang Kehutanan.

Suhartati, Rahmayanto, Y., & Daeng, Y. (2014). The reducing of acacia rotation impact to sustainability of productivity, ecology and social aspect. Info Teknis Eboni, 11(2), 103–116.

Susanto, D. W. I., Hayatudin, Setiawan, A., Purnomo, H., Ruhiyat, D., & Amirta, R. (2017). Characterizing nutrient status and growth of Macaranga gigantea in tropical rainforest gaps after selective logging in East Kalimantan , Indonesia. Biodiversitas, 18(3), 996–1003. https://doi.org/10.13057/biodiv/d180318

Tarigan, M., Roux, J., Wyk, M. Van, Tjahjono, B., & Wingfield, M. J. (2011). A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C . acaciivora sp . nov . in Indonesia. South African Journal of Botany, 77(2), 292–304. https://doi.org/10.1016/j.sajb.2010.08.006

Tata, H. L., & Pradjadinata, S. (2016). Native species for degraded peat swamp forest rehabilitation. Jurnal Silvikultur Tropika, 7(3), 80–82.

The Goverment of Indonesian Republic. The Goverment Regulation about the protection and management of peatland ecosystem, Pub. L. No. No. 57 (2016). Indonesian Republic. Retrieved from http://peraturan.go.id/pp/nomor-57-tahun-2016.html

Webber, J. F., Mullett, M., & Brasier, C. M. (2010). Dieback and mortality of plantation Japanese larch ( Larix kaempferi ) associated with infection by Phytophthora ramorum. New Disease Reports, 22(19), 19. https://doi.org/doi:10.5197/j.2044-0588.2010.022.019]

Wingfield, M. J. (2003). Increasing threat of diseases to exotic plantation forests in the Southern Hemisphere : lessons from Cryphonectria canker Presented at the 14th Biennial Conference of the Australasian Plant Pathology Society and. Australasian Plant Pathology, 32, 133–139.

Wingfield, M. J., Roux, J., & Wingfield, B. D. (2011). Insect pests and pathogens of Australian acacias grown as non-natives - an experiment in biogeography with far-reaching consequences. Diversity and Distributions, 17, 968–977. https://doi.org/10.1111/j.1472-4642.2011.00786.x

Yamada, T., Watanabe, K., Okuda, T., Sugimoto, T., & Azlin,

Y. N. (2016). Growth and survival of trees planted in an oil palm plantation : Implications for restoration of biodiversity. Journal of Tropical Forest Science, 28(1), 97–105.

Refbacks

  • There are currently no refbacks.