BIODEGRADATION OF PULP SLUDGE BY Phanerochaete chrysosporium, Penicillium oxalicum and Penicillium citrinum AFTER SIX MONTHS INCUBATION

Autor(s): Siti Wahyuningsih
DOI: 10.20886/ijfr.2019.6.2.95-105

Abstract

The rise of pulp and paper production due to market’s demand will also increase both main and secondary products of pulp. Secondary products such as pulp sludge have low economic value, but high environmental cost. Therefore it needs improved technology input to raise its value. This study aims to evaluate the ability of Phanerochaete chrysosporium, a combination of Penicillium citrinum and P. oxalicum and a mixture of those three fungal species in decomposing pulp sludge after one and six months incubation. The pulp sludge was collected from pulp company in North Sumatera, Indonesia and it was pre-treated prior to composting. The composting was conducted by inoculating P. chrysosporium, a combination of P. oxalicum and P. citrinum or a mixture of those fungal species with a density of 107 spores/ml into 15 kg treated sludge. The inoculated sludge was then incubated for one and six months. Analysis was held for the non-inoculated and inoculated sludge regarding pH, cation exchange capacity (CEC) (me/100 g), macronutrients (N, P, K, Ca and Mg) (%), micronutrients (S, Zn) (ppm) and heavy metals (Pb, Cd) (ppm). After one month incubation, P. chrysosporium was leading in enhancing sludge’s macro and micronutrients. After six months incubation, a combination of P. oxalicum and P. citrinum generated higher P, K, CEC and reduced lead content of the sludge. Meanwhile, a mixture of the three fungus species produced the highest N and Mg.

Keywords

pulp sludge; decomposition; biodecomposer; P.chrysosporium; P.oxalicum; P.citrinum

Full Text:

PDF

References

Akamatsu, Y., Higuchi, D., B, Ma. T., & Shimada, M. (1990). A novel enzymatic decarboxylation of oxalic acid by the LiP of white rot fungus P. chrysosporium. FEBS Lett., 269(261-263).

APKI. (2016). Opportunities and challenges of Indonesian pulp and paper industry. Proceeding. Jakarta, Indonesia.

Assareh, M., H., & Ghamari-Zare, A. (2008). Seedling response of three Eucalyptus species to cupper and zinc. Journal Environmental Science, 6(2), 97-103.

Bahobil, A., Bayoumi, R. A., Atta, H. M., M, M., & Sehrawey, E. (2017). Fungal Biosorption for Cadmium and Mercury Heavy Metal Ions Isolated from Some Polluted Localities in KSA. International Journal of Current Microbiology and Applied Sciences, 6(6), 2138-2154. doi:10.20546/ijcmas.2017.606.253

Bajpai, P. (2015). Management of Pulp and Paper Mill Waste. Springer. 197p.

Baldrian, P. (2003). Interactions of heavy metals with white rot fungi.pdf. Enzyme and Microbial technology, 32, 78-91.

Baldrian, P., & Valaskova, V. (2008). Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev, 32(3), 501-521. doi:10.1111/j.1574-6976.2008.00106.x

Bonnarme, P., & Jeffries, W. (1990). MN(ii) regulation of lignin peroxidase and Mn-dependent peroxidase from lignin degrading white rot fungi. Applied and Environmental Microbiology, 56(1), 210-217.

Das, K.C., Tollne, E.W., and Tornabene, T, G. (1998). Composting pulp and paper industry solid wastes; process design and product evaluation. Proceedings of the composting in the southeast conference and expo, Sept. 9-11, 1998. University of Georgia, Athena.

Doughari, J., H. (2011). Production of -glucanase enzyme from Penicillium oxalicum and Penicillium citrinum. African Journal of Biotechnology, 10(47), 9657-9660. doi:10.5897/ajb07.484

Dutta, T., Sahoo, R., Sengupta, R., Ray, S. S., Bhattacharjee, A., & Ghosh, S. (2008). Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol, 35(4), 275-282. doi:10.1007/s10295-008-0304-2

Evanylo, G.K. and Daniels, W.L. (1999) Paper mill sludge composting and compost utilization. Compost Science and Utilization, 7, 30-39.

Ghosal, G., Banerjee, U., C., & Shivhare, U., S. (2013). Optimization of cellulase production using penicillium citrinum. British Biotechnology Journal, 3(4), 509-523.

Gopinathan, M and Thirumurthy, M. (2012). Evaluation of phytotoxicity for compost from fraction of municipal solid waste and paper & pulp mills sludge. Environmental Research, Engineering & Management, 47-51p.

Hong Y, Dashtban M, Chen S, Song R, Qin W (2015) Lignin in Paper Mill Sludge is degraded by White-Rot Fungi in Submerged Fermentation. J Microb Biochem Technol 7:177-181. doi:10.4172/1948-5948.1000201

Horn, S. J., Vaaje-Kolstad, G., Westereng, B., & Eijsink, V. G., H. (2012). Novel enzymes for the degradation of cellulose. Biotechnol Biofuels, 5(1), 45. doi:10.1186/1754-6834-5-45

Jeffries, T., W., Choi, S., & Kirk, T., K,. (1981). Nutritional regulation of lignin degradation by P chrysosporium. Applied and Environmental Microbiology, 42(2), 290-296.

Kersten, P., & Cullen, D. (2007). Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol, 44(2), 77-87. doi:10.1016/j.fgb.2006.07.007

Komarayati and Gusmailina. (2007). Pemanfaatan limbah padat industri pulp untuk pupuk organik (Uitlization of solid waste of pulp industry for organic fertilizer). Jurnal Penelitian Hasil Hutan (Journal of Forest Products) 25 (2), 137 - 146.

Kuhad, R, C & Singh, A. (1993). Enhanced production of cellulases by Penicillium citrinum in solid state fermentation of cellulosic residue, Worlds Journal of Microbiology and Biotechnology, 9 (1), 100-101.

Kumari, M., Yadav, R., S, S., & Yadav, K., D, S. (2002). Secretion of ligninperoxidase by Pcitrinum, F oxysporum and A terreus. Indian Journal of Experimental Biology, 40, 802-806.

Liao, H., Li, S., Wei, Z., Shen, Q., & Xu, Y. (2014). Insight into high-efficiency lignocellulolytic enxyme production by P oxalicum. Biotechnology for Biofuels, 7(162).

Mall, I, D. (2014). Pulp and Paper; Pulping and Bleaching. Department of Chemical Engineering Indian Institute of Technology, Roorkee. Retieved from https://nptel.ac.in/courses/103107082/module3/lecture2/lecture2.pdf at 12 September 2018.

Maples, G, E & Ambady, R. (1991). Process for recycling for bleach plant filtrate. US Grant; US5352332A.

Marandi, R., Ardejani, R., D., & Afsar, H., A,. (2010). Biosorption of lead and zinc ions by pre-treated biomass of P.chrysosporium. Internationla Journal of Mining & Environmental Issues, 1(1).

Ousmanova, D., & Parker, W. (2006). Fungal Generation of Organic Acids for Removal of Lead from Contaminated Soil. Water, Air, and Soil Pollution, 179(1-4), 365-380. doi:10.1007/s11270-006-9241-8

Price, M., S., Classen, J., J., & Payne, G., A. (2001). A. niger absorbs copper and zinc from swine wastewater. Bioresource Technology, 77, 41-49.

Rajwar, D., Joshi, S., & Rai, J., P, N. (2016). Ligninolytic enzymes prodcution ad decolorization potential of native fungi from pulp and paper mill sludge. Nature Environment and Pollution Technology, 15(4), 1241-1248.

Sazanova, K., Osmolovskaya, N., Schiparev, S., Yakkonen, K., Kuchaeva, L., & Vlasov, D. (2015). Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions. Curr Microbiol, 70(4), 520-527. doi:10.1007/s00284-014-0751-0

Scott, G, M. (1995). Sludge charactersitics and disposal alternatives for the pulp and paper industry. Proceedings of the 1995 International environmental conference, May 7-10, Atlanta, GA. TAPPI Press, 269-279p.

Setyawati, A. (2017). Pulp and paper industry Indonesia: Chellenges and opportunities. Indonesia Investments. Retrieved from https://www.indonesia-investments.com/news/todays-headlines/pulp-and-paper-industry-indonesia-challenges-and-opportunities/item7738? at 19 April 2018.

Shah, S. P., Kalia, K. S., & Patel, J. S. (2015). Optimization of cellulase production by Penicillium oxalicum using banana agrowaste as a substrate. J Gen Appl Microbiol, 61(2), 35-43. doi:10.2323/jgam.61.35

Simangunsong, E., R. (2014). Pengendalian Persediaan Bahan Baku Kimia: Studi Kasus di PT Toba Pulp Lestari Tbk, Porsea, Sumatera Utara. Skripsi.

Sippola, J., Makela-Kurtto, M, and Rantala, P. (2003). Effects of composted pulp and paper industry wastewater treatment residuals on soil and cereal yield. Compost Science & Utilization, 11 (3).

Song, W., Han, X., Qian, Y., Liu, G., Yao, G., Zhong, Y., & Qu, Y. (2016). Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol Biofuels, 9, 68. doi:10.1186/s13068-016-0477-2

Suhag, M. (2011). Bio sorption of cadmium (II) from aqueous solution by free and immobilized biomass of P. Citrinum. Journal of Advances in Science and Technology, 2(2).

Tian, D., Wang, W., Su, M., Zheng, J., Wu, Y., Wang, S., . . . Hu, S. (2018). Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum. Environ Sci Pollut Res Int. doi:10.1007/s11356-018-2243-4

Tien, M., & Kirk, T., K. (1988). Lignin peroxidase of P chrysosporium. Meth. Enzymol., 161B, 238-248.

Urek, R., O, & Pazarlioglu, N., K. (2007). Enhanced production of manganese peroxidase by P chrysosporium. Brazilian Archives of Biology and Technology, 50(6), 913-920.

Wahab, A. A., Awang, A. S. A. H., Azham, Z., Tay, M. G., & Adeyemi, F. M. (2017). Biosorption of lead (II) ion using Penicillium citrinum KR706304 isolated from the mangrove soil environment of southeast Borneo. Ife Journal of Science, 19(2). doi:10.4314/ijs.v19i2.14

Refbacks

  • There are currently no refbacks.