IMAGING TROPICAL PEATLAND AND AQUIFER POTENTIAL IN SOUTH SUMATERA USING ELECTRICAL RESISTIVITY TOMOGRAPHY

Autor(s): Muhammad Rizki Ramdhani, Acep Ruhimat, Wiyono Wiyono, Ahmad Barnes
DOI: 10.20886/ijfr.2020.7.1.1-14

Abstract

Indonesia has one of the largest tropical peatland areas in the world. In Sumatra Island, peatland is spread over 11 areas and it was mainly found in Riau (60.1%) and South Sumatra (19.6 %) Provinces. This study investigates the subsurface of tropical peatland in Ogan Komering Ilir Regency, South Sumatra Province. Data was recorded using Electrical Resistivity  Tomography (ERT) method based on the sub-surface images of tropical peatland. This study was conducted based on dipole-dipole configuration with 72 channels spread. This paper also studies the physical properties (thickness and electrical resistivity) of peatland and its substrate using ERT. In this study the ERT section and the geological map identified Alluvium (Qs), Kasai Formation, and the Basement. Result shows the ERT is applicable for imaging the thickness of tropical peatland and other geological features (Aquifer, geological structures, and stratigraphy). The electrical resistivity of peat varies from 20 ohm meter to 120 ohm meter and the thickness of peat varies from 2–5 meter. In some ERT sections, the basement was identified from 130 meter to 170 meter beneath the surface. The aquifer sweet spots were located from ERT Sections combined with the hydrogeological map. The aquifer was identified in Kasai Formation. The thickness of the aquifer layer is 2–20 meter. These physical properties may support the peatland conservation (forest fire mitigation) and geotechnical analysis purposes.   

Keywords

Electrical Resistivity Tomography; Peatland; Aquifer; Riau; South Sumatra

Full Text:

PDF

References

Agus, F., Anda, M., Jamil, A., & Masganti. (2014). LAHAN GAMBUT INDONESIA Pembentukan, Karakteristik, dan Potensi Mendukung Ketahanan Pangan. Bogor: Badan Penelitian dan Pengembangan Pertanian.

Andriesse, J. P. (1988). Nature and Management of Tropical Peat Soils. FAO Soils Bulletin (Vol. 59). Rome: Food and Agriculture Organization (FAO).

Asadi, A., & Huat, B. B. K. (2009). Electrical resistivity of tropical peat. Electronic Journal of Geotechnical Engineering, 14 P, 1–9.

Bishop, M. G. (2001). South sumatra basin province, indonesia: the lahat/talang akar-cenozoic total petroleum system. https://doi.org/10.3133/ofr9950S

Cameron, C. C., Palmer, C. A., & Esterle, J. S. (1990). The geology of selected peat-forming environments in temperate and tropical latitudes. International Journal of Coal Geology, 16(1–3), 127–130. https://doi.org/10.1016/0166-5162(90)90018-T

CNN, I. (2019). Sehari 353 Titik Api di Sumsel, Terbanyak Sepanjang 2019. Retrieved October 15, 2019, from https://www.cnnindonesia.com/nasional/20190909004748-20-428609/sehari-353-titik-api-di-sumsel-terbanyak-sepanjang-2019

Comas, X., Terry, N., Slater, L., Warren, M., Kolka, R., Kristiyono, A., … Darusman, T. (2015). Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization. Biogeosciences, 12(10), 2995–3007. https://doi.org/10.5194/bg-12-2995-2015

Comas, Xavier, Slater, L., & Reeve, A. (2004). Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a Northern Peatland. Journal of Hydrology, 295(1–4), 173–184. https://doi.org/10.1016/j.jhydrol.2004.03.008

Comas, Xavier, Slater, L., & Reeve, A. S. (2011). Pool patterning in a northern peatland: Geophysical evidence for the role of postglacial landforms. Journal of Hydrology, 399(3–4), 173–184. https://doi.org/10.1016/j.jhydrol.2010.12.031

Darman, H., Sidi, F. H. (2000). An Outline of the Geology of Indonesia. Indonesian Association of Geologist-Jakarta.

De Coster, G. L. (1974). The Geology of the Central and South Sumatra Basins. In Proc. Indon Petrol. Assoc., 3rd Ann. Conv. Jakarta: Indonesian Petroleum Association (IPA). https://doi.org/10.29118/IPA.670.77.110

Fetter, C. W. (2001). Applied hydrogeology. Supplemental website http://www. appliedhydrogeology. info. Upper Saddle River, NJ: Prentice Hall. Pearson Education Ltd.

Hobbs, N. B. (1986). Mire morphology and the properties and behaviour of some British and foreign peats. Quarterly Journal of Engineering Geology and Hydrogeology. https://doi.org/10.1144/GSL.QJEG.1986.019.01.02

Kirsch, R. (Ed.). (2009). Groundwater Geophysics. Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-88405-7

Kittie, S., Schouten, G., & Hein, L. (2018). The institutional fi t of peatland governance in Indonesia. Land Use Policy. https://doi.org/10.1016/j.landusepol.2018.03.031

Kowalczyk, S., Zukowska, K. A., Mendecki, M. J., & Łukasiak, D. (2017). Application of electrical resistivity imaging (ERI) for the assessment of peat properties: A case study of the Całowanie Fen, Central Poland. Acta Geophysica, 65(1), 223–235. https://doi.org/10.1007/s11600-017-0018-9

Kurniain, A., Notohadikusumo, T., & Radjagukguk, B. (2006). Impact of development and cultivation on hydro-physical properties of tropical peat soils. Tropics, 15(4), 383–389. https://doi.org/10.3759/tropics.15.383

Loke, M. H. (2000). Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-d surveys. https://doi.org/10.3390/su8111117

Loke, Meng Heng. (2011). Electrical Resistivity Surveys and Data Interpretation. In Encyclopedia of Earth Sciences Series (pp. 276–283). Springer. https://doi.org/10.1007/978-90-481-8702-7_46

Mangga, S. A., Sukardi, & Sidarto. (1993). Geological Map Of Tulung Selapan Quadrangle. Scale 1 : 250.000. Bandung: Geological Research and Development Center.

Osaki, M., Nursyamsi, D., Noor, M., Wahyunto, & Segah, H. (2016). Peatland in Indonesia. In Tropical Peatland Ecosystems (pp. 49–58). Tokyo: Springer Japan. https://doi.org/10.1007/978-4-431-55681-7_3

Page, S. E., Rieley, J. O., & Banks, C. J. . (2011). Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17(2), 798–818. https://doi.org/10.1111/j.1365-2486.2010.02279.x

Pasaribu, M., & Mudiana, W. (2013). Hydrogeological Map Of Tulung Selapan Quadrangle. Scale 1 : 250.000. Bandung: Geological Agency.

Putra, R., Sutriyono, E., Kadir, S., & Iskandar, I. (2019). Understanding of fire distribution in the South Sumatra peat area during the last two decades. International Journal of GEOMATE, 16(54), 2186–2990. https://doi.org/10.21660/2019.54.8243

Reynolds, J. M. (2011). An Introduction to Applied and Environmental Geophysics. John Wiley & Sons, Ltd.

Rieley, J., & Page, S. (2016). Tropical Peatland of the World. In Tropical Peatland Ecosystems (pp. 3–32). Tokyo: Springer Japan. https://doi.org/10.1007/978-4-431-55681-7_1

Sass, O., Friedmann, A., Haselwanter, G., & Wetzel, K. F. (2010). Investigating thickness and internal structure of alpine mires using conventional and geophysical techniques. Catena, 80(3), 195–203. https://doi.org/10.1016/j.catena.2009.11.006

Slater, L. D., & Reeve, A. (2002). Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics. Geophysics, 67(2), 365–378. https://doi.org/10.1190/1.1468597

Subarnas, A., & Ibrahim, A. (2018). Survei Tinjau Gambut Kabupaten Musi Banyuasin, Provinsi Sumatera Selatan. Bandung: Pusat Sumber Daya Mineral batubara dan Panas Bumi.

SxEN, Z. (2015). Practical and Applied Hydrogeology. Elsevier. https://doi.org/10.1016/C2013-0-14020-2

Taufik, M., Veldhuizen, A. A., Wösten, J. H. M., & van Lanen, H. A. J. (2019). Exploration of the importance of physical properties of Indonesian peatlands to assess critical groundwater table depths, associated drought and fire hazard. Geoderma, 347, 160–169. https://doi.org/10.1016/j.geoderma.2019.04.001

Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics. Cambridge University Press, Cambridge. https://doi.org/10.1180/minmag.1982.046.341.32

Trappe, J., & Kneisel, C. (2019). Geophysical and Sedimentological Investigations of Peatlands for the Assessment of Lithology and Subsurface Water Pathways. Geosciences, 9(3), 118. https://doi.org/10.3390/geosciences9030118

Wahyunto, Nugroho, K., & Fahmuddin, A. (2014). Perkembangan Pemetaan dan Distribusi Lahan Gambut di Indonesia. In LAHAN GAMBUT INDONESIA (Pembentukan, Karakteristik, dan Potensi Mendukung Ketahanan Pangan). Bogor: Badan Penelitian dan Pengembangan Pertanian.

Walter, J., Lück, E., Bauriegel, A., Facklam, M., & Zeitz, J. (2018). Seasonal dynamics of soil salinity in peatlands : A geophysical approach. Geoderma, 310(August 2017), 1–11. https://doi.org/10.1016/j.geoderma.2017.08.022

Walter, J., Lück, E., Heller, C., Bauriegel, A., & Zeitz, J. (2019). Relationship between electrical conductivity and water content of peat and gyttja: implications for electrical surveys of drained peatlands. Near Surface Geophysics, 1–11. https://doi.org/10.1002/nsg.12030

Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O., & Limin, S. H. (2008). Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena, 73(2), 212–224. https://doi.org/10.1016/j.catena.2007.07.010

Yoshino, T. (2011). Electrical Properties of Rocks. In Encyclopedia of Earth Sciences Series (pp. 270–276). Springer. https://doi.org/10.1007/978-90-481-8702-7_45

Refbacks

  • There are currently no refbacks.