EARLY GROWTH OF JABON (Anthocephalus cadamba Miq) IN A DRAINED PEATLAND OF PELALAWAN, RIAU

Autor(s): Ahmad Junaedi, Nina Mindawati, Yanto Rochmayanto
DOI: 10.20886/ijfr.2021.8.1.59-72

Abstract

The desirability to explore other tree species that can be used to substitute Acacia crassicarpa in forest plantation has increased. One of the early insights that must be known is the growth performances of tree species candidates, especially in planting conditions (site and silviculture) similar to A. crassicarpa plantation. This study evaluated the growth performance of jabon (A. cadamba Miq.) and its relationship with soil properties in a drained peatland. The research was conducted by establishing experimental plots of jabon in a drained peatland (DP) using a randomised complete block design with three spacing (2 m x 3 m, 2.5 m x 3 m, 3 m x 3 m) as treatment and three blocks as replications. The study observed survival, growth and soil chemical properties. At 24 months after planting (MaP), since the toxicity of soil micronutrients was excessive as one of the main factors; the mortality rate of jabon was high (62%), while its growth was poor (height = 259 cm and DBH = 3.74 cm) in drained peatland. However, the study observed that 7% of jabon had good growth, with a range of height growth at 24 MaP of 401–660 cm. These results indicated that though overall jabon did not show good growth in DP, however, it was found that 7% of jabon had promising growth; therefore, it was suggested that through tree improvement program and certain treatments to overcome micronutrient toxicity and weed suppression, the possibility of jabon was able to be developed in a DP for forest plantation is still.

Keywords

Growth, Anthocephalus cadamba; Acacia crassicarpa; micronutrients toxicity; tree impovement

Full Text:

PDF

References

Abdulah, L., Mindawati, N., Kosasih, A. S., & Darwo. (2013). Early growth evaluation of Neolamarckia cadamba Roxb at private forest. Jurnal Penelitian Hutan Tanaman, 10(3), 119–128. doi://10.20886/jpht.2013.10.3.119-127.

Adamski, J. M., Peters, J. A., Danieloski, R., & Bacarin, M. A. (2011). Excess iron-induced changes in the photosynthetic characteristics of sweet potato. Journal of Plant Physiology, 168(17), 2056–2062. doi://10.1016/j.jplph.2011.06.003.

Agus, C., Ilfana, Z. R., Azmi, F. F., Rachmanadi, D., Widiyatno, Wulandari, D., ...Lestari, T. (2020). The effect of tropical peat land-use changes on plant diversity and soil properties. International Journal of Environmental Science and Technology, 17(3), 1703–1712. doi://10.1007/s13762-019-02579-x.

Aprianis, Y. (2016). The possibillity of alternative wood for pulp. In A. Hidayat, Sudarmalik, E. Novriyanti, H. H. Rachmat, & A. Wahyudi (Eds.), The Proceeding of Research Finding : Opputunities and Challanges of The Development of Environment and Forestry in Riau (pp. 1–11). Balai Litbang Teknologi Serat Tanaman Hutan.

Barua, S. K. (2015). Plantation vision: Potentials, challenges and policy options for global industrial forest plantation development. International Forestry Review, 16(2), 117-127. doi://10.1505/146554814811724801.

Bijalwan, A., Dobriyal, M. J., & Bhartiya, J. K. (2014a). A potential fast growing tree for agroforestry and carbon sequestration in a potential fast growing tree for agroforestry and carbon sequestration in India: Anthocephalus cadamba (Roxb.). American Journal of Agriculture and Forestry, 2(6), 296–301. doi://10.11648/j.ajaf.20140206.21.

Bijalwan, A., Dobriyal, M. J. R., & Bhartiya, J. K. (2014b). A potential fast growing tree for Agroforestry and carbon sequestration in India: Anthocephalus cadamba (Roxb.). American Journal of Agriculture and Forestry, 2(6), 296–301. doi://10.11648/j.ajaf.20140206.21.

Biswas, D., Misbahuddin, M., Roy, U., Francis, R. C., & Bose, S. K (2011). Bioresource technology effect of additives on fiber yield improvement for kraft pulping of kadam (Anthocephalus chinensis). Bioresource Technology, 102, 1284–1288. doi://10.1016/j.biortech.2010.08.059.

Bray, R.H. & Kurtz, L. T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Sciences, 59, 39–45.

Bremner, J. M., & Mulvaney, C. S. (1982). NitrogenTotal, Part 2. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Method of Soil Analysis Part 2 (2nd ed., p. 595-624). American Society of Agronomy, Inc. & Soil Science Society of America, Inc.

Chatzistathis, T., Alifragis, D., & Papaioannou, A. (2015). The influence of liming on soil chemical properties and on the alleviation of manganese and copper toxicity in Juglans regia, Robinia pseudoacacia, Eucalyptus sp. and Populus sp. plantations. Journal of Environmental Management, 150, 149–156. doi://10.1016/j.jenvman.2014.11.020.

Choudhury, S., & Sharma, P. (2014). Plant physiology and biochemistry aluminum stress inhibits root growth and alters physiological and metabolic responses in chickpea (Cicer arietinum L.). Plant Physiology and Biochemistry, 85, 63–70. doi://10.1016/j.plaphy.2014.10.012.

Christianus, S. (2006). The experience of the establishment of industrial plantation forest in PT. RAPP, Pelalawan-Riau (pp. 87–100). Wetlands International.

Daryono, H. (2009). Potency, problems, policy and peatland management needed for sustainable peat swamp forest. Jurnal Analisis Kebijakan Kehutanan, 6(2), 71–101.

Eviati, & Sulaeman. (2009). Manual for chemical analysis of soil, plant and fertilise. B. H. Prasetyo, D. Santoso, & L. Retno W (Eds.); 2nd ed.). Research Institute for Soil.

Fahmi, A., Radjagukguk, B., Purwanto, B. H., & Hanudin, E. (2012). The influnece of peat layer on hydrogen and aluminium concentration originating from the substratum sulphidic materials. Journal of Tropical Soils, 17(3), 197–202. doi://10.5400/jts.2012.17.3.197.

Filho, A. C. F., Mola-yudego, B., & González-, J. R. (2018). Thinning regimes and initial spacing for Eucalyptus plantations in Brazil. Annals of the Brazilian Academy of Sciences, 90(1), 255–265.

Guzzo, C. D., De Carvalho, L. B., Giancotti, P. R. F., Alves, P. L. C., Gonçalves, E. C. P., & Martins, J. V. F. (2014). Impact of the timing and duration of weed control on the establishment of a rubber tree plantation. Anais Da Academia Brasileira de Ciencias, 86(1), 495–504. doi://10.1590/0001-37652014119113.

Hikmatullah, & Sukarman. (2014). Physical and chemical properties of cultivated peat soils in four trial sites of ICCTF in Kalimantan and Sumatra, Indonesia. Journal of Tropical Soils, 19(3), 131–141. doi://10.5400/jts.2014.19.3.131.

Hilwan, I., Setiadi, Y., & Rachman, H. (2013). Evaluation of some Dipterocarp species in revegetation areas of PT . Kitadin, East Kalimantan. Jurnal Silvikultur Tropika, 04(02), 108–112.

Hodson, M. J. (2012). Metal toxicity and tolerance in plants. Features, 28 October. doi://10.1042/BIO03405028.

Husnain, H., Wigena, I. G. P., Dariah, A., Marwanto, S., Setyanto, P., & Agus, F. (2014). CO2 emissions from tropical drained peat in Sumatra, Indonesia. Mitigation and Adaptation Strategies for Global Change, 19(6), 845–862. doi://10.1007/s11027-014-9550-y.

Junaedi, A. (2018a). Growth of Anthocephalus cadamba Miq. in marginal land ultisol in Riau. Jurnal Pemuliaan Tanaman Hutan, 12(1), 51–63. doi://10.20886/jpth.2018.12.1.51-63.

Junaedi, A. (2018b). Growth performance of three native tree species for pulpwood plantation in drained peatland of Pelalawan District, Riau. Indonesian Journal of Forestry Research, 5(2), 119–132. doi//10.20886/ijfr.2018.5.2.119-132.

Karak, T., Sonar, I., Paul, R. K., Frankowski, M., Boruah, R. K., Dutta, A. K., & Das, D. K. (2015). Aluminium dynamics from soil to tea plant (Camellia sinensis L.): Is it enhanced by municipal solid waste compost application? Chemosphere, 119, 917–926. doi://10.1016/j.chemosphere.2014.08.067.

Kitao, M., Lei, T. T., Nakamura, T., & Koike, T. (2001). Manganese toxicity as indicated by visible foliar symptoms of Japanese white birch (Betula platyphylla var. japonica). Environmental Pollution, 111, 89–94.

Lampela, M., Jauhiainen, J., Sarkkola, S., & Vasander, H. (2017). Promising native tree species for reforestation of degraded tropical peatlands. Forest Ecology and Management, 394, 52–63. doi://10.1016/j.foreco.2016.12.004.

Li, X., Ma, H., Jia, P., Wang, J., Jia, L., Zhang, T., Yang, Y., Chen, H., & Wei, X. (2012). Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Ecotoxicology and Environmental Safety, 86, 47–53. doi://10.1016/j.ecoenv.2012.09.010.

Millaleo, R., Ivanov, A. G., Mora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal Soil Science Plant Nuts., 10(4), 476–494.

Ministry of Enviroment and Forestry. (2021). The statistic of Ministry of Enviroment and Forestry 2019. The Ministry of Environment and Forestry, Jakarta.

The Regulation of Forestry Ministry about a Manual for evaluate the succesfull of forest reclamation (2009). The Ministry of Forestry, Jakarta.

Ministry of Environment and Forestry. (2016). The statistic of Environment and Forestry 2015. The Ministry of Environment and Forestry, Jakarta.

Moosavi, A. A., & Ronaghi, A. (2011). Influence of foliar and soil applications of iron and manganese on soybean dry matter yield and iron-manganese relationship in a Calcareous soil and iron-manganese relationship in a Calcareous soil. Australian Journal of Crop Science, 5(12), 1550–1556.

Motsara, M. R., & Roy, R. N. (2008). Guide to laboratory establishment for plant nutrient analysis. FAO.

Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals , occurrence and toxicity for plants : a review. Environmental Chemistry Lett, 8, 199–216. doi://10.1007/s10311-010-0297-8.

Neenu, S., & Karthika, K. S. (2019). Aluminium toxicity in soil and plants. Harit Dhara, 2(1), 15–19.

Pereira, E. G., Oliva, M. A., Gusmão, E., Antonio, M., Rosado-souza, L., Camargo, G., Santos, D., Henrique, C., & Miyasaka, A. (2013). Iron excess affects rice photosynthesis through stomatal and non stomatal limitations. Plant Science, 201–202(March), 81–92. doi://10.1016/j.plantsci.2012.12.003.

Prabagar, S., Hodson, M. J., & Evans, D. E. (2011). Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst.). Environmental and Experimental Botany, 70, 266–276. doi://10.1016/j.envexpbot.2010.10.001.

Qadir, M., Schubert, S., & Steffens, D. (2013). Phytotoxic substances in soils. Reference Module in Earth Systems and Environmental Sciences, April, 1–6.doi://10.1016/B978-0-12-409548- 9.05255-6.

Rahman, A., Lee, S., Ji, H. C., Kabir, A. H., Jones, C. S., & Lee, K (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils : Current status and opportunities. International Journal of Molecular Sciences, 19(3073), 1–28. doi://10.3390/ijms19103073.

Rehmus, A., Bigalke, M., Valarezo, C., Mora, J., & Wolfgang, C (2014). Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador: response of biomass and plant morphology to elevated Al concentrations. Plant Soil, 382, 301–315. doi://10.1007/s11104-014-2110-0.

Rouphael, Y., Cardarelli, M., & Colla, G. (2015). Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Scientia Horticulturae, 188, 97–105. doi://10.1016/j.scienta.2015.03.031.

Schaberg, P. G., Tilley, J. W., Hawley, G. J., Dehayes, D. H., & Bailey, S. W. (2006). Associations of calcium and aluminum with the growth and health of sugar maple trees in Vermont. Forest Ecology and Management, 223, 159–169. doi://10.1016/j.foreco.2005.10.067.

Seo, J., Kim, H., Chun, J.-H., Mansur, I., & Lee, C.-B. (2015). Silvicultural practice and growth of the jabon tree (Anthocephalus cadamba Miq.) in community forests of West Java, Indonesia. Journal of Agriculture & Life Science, 49(4), 81–93.

Soewandita, H. (2018). A study of water management and palm oil productivity in peatlands (Case study : Peatlands of PT Jalin Vaneo's palm plantation in North Kayong District, West Kalimantan Province). Jurnal Sains & Teknologi Modifikasi Cuaca, 19(1), 41–50.

Subiakto, A., Rachmat, H. H., & Sakai, C. (2016). Choosing native tree species for establishing man-made forest : A new perspective for sustainable forest management in changing world. Biodiversitas, 17(2), 620–625. doi://doi.org/10.13057/biodiv/d170233.

Sudrajat, D. J., Nurhasybi, Siregar, I. Z., Siregar, U. J., Mansur, I., & Khumaida, N. (2016). Intraspecific variation on early growth of Neolamarckia cadamba Miq. in provenanceprogeny tests in West Java Province, Indonesia. Biotropia, 23(1), 10–20. doi://10.11598/btb.2016.2.

Suhartati, Rahmayanti, S., & Nurrohman, E. (2012). Sebaran dan persyaratan tumbuh jenis alternatif penghasil pulp di wilayah Riau. In N. Mindawati, P. Pamoengkas, & U. Sutisna (Eds.). Kementerian Kehutanan.

Suhartati, S., Aprianis, Y., Pribadi, A., & Rochmayanto, Y. (2013). Study of reduction cycle impact of Acacia crassicarpa A. Cunn plantation to production value and social aspect. Jurnal Penelitian Hutan Tanaman, 10(2), 109–117. doi://10.20886/jpht.2013.10.2.109117.

Tawaraya, K., Takaya, Y., Turjaman, M., Tuah, S. J., Limin, S. H., Tamai, Y., Cha, J. Y., Wagatsuma, T., & Osaki, M. (2003). Arbuscular mycorrhizal colonisation of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. Forest Ecology and Management, 182(1–3), 381–386. doi://10.1016/S0378-1127(03)00086-0.

Turjaman, M., Santoso, E., Susanto, A., Gaman, S., Limin, S. H., Tamai, Y., Osaki, M., & Tawaraya, K. (2011). Ectomycorrhizal fungi promote growth of Shorea balangeran in degraded peat swamp forests. Wetlands Ecology and Management, 19(4), 331–339. doi://10.1007/s11273-011-9219-1.

Tuukkanen, T., Marttilla, H., & Klove, B. (2017). Predicting organic matter, nitrogen, and phosphorus concentrations in runoff from peat extraction sites using partial least squares regression. Water Resources Research, 53, 5860–5876. doi://10.1002/2017WR020557.

Wahyudi. (2012). Growth and yield analysis of jabon plantation (Anthocephallus cadamba). Jurnal Perennial, 8(1), 19–24.

Wirabuana, P. Y. A. P., Sadono, R., Juniarso, S., & Idris, F. (2020). Interaction of fertilisation and weed control influences on growth, biomass, and carbon in eucalyptus hybrid (E. pellita × E. brassiana). Jurnal Manajemen Hutan Tropika, 26(2), 144–154. doi://10.7226/JTFM.26.2.144.

Wu, J. W., Shi, Y., Zhu, Y. X., Wang, Y. C., & Gong, H. J. (2013). Mechanisms of enhanced heavy metal tolerance in plants by silicon: A review. Pedosphere, 23(6), 815–825. doi://10.1016/S10020160(13)60073-9.

Ximenes, M. P., Mayun, I. A., & Pradnyawathi, N. L. M. (2018). The combined effect of plant spacing and varieties on the growth and the corn yields (Zea mays L.) at Loes, Sub District of Maubara, District of Liquisa Repupublica Democratica De Timor Leste Plant. E-Jurnal Agroteknologi Tropika, 7(2), 295–303.

Yao, A. Y., Donglin, M., Gang, X., Lutts, S., Achal, V., & Ma, J. (2012). Contrasting performance and different tolerance of chestnut rose and grape to excess manganese. Journal Plant Growth Regulator, 31, 416–426. doi://10.1007/s00344-011-9251-7.

You-qiang, F. U., Hong, S., Dao-ming, W. U., & Kun-zheng, C. A. I. (2012). Silicon-mediated amelioration of Fe 2 + toxicity in rice (Oryza sativa L.) roots. Pedosphere, 22(6), 795–802.doi://10.1016/S10020160(12)60065-4.

Yu, H. N., Liu, P., Wang, Z. Y., Chen, W. R., & Xu, G. D. (2011). The effect of aluminum treatments on the root growth and cell ultrastructure of two soybean genotypes. Crop Protection, 30(3), 323–328. doi://10.1016/j.cropro.2010.11.024.

Yudianto, A. Y., Fajriani, S., & Aini, N. (2015). Influence of plant spacing and pilled frequency on growth and yield of arrowroot plant (Marantha arundinaceae L.). Jurnal Produksi Tanaman, 3(3), 172–181.

Zuhaidi, Y.A., Hashim, M. N., Sarifah, K., & Norhazaedawati, B (2012). Domestication of lesser known tropical species Neolamarckia cadamba among the small scale forest owners. FRIM, Malaysia.

Zuhaidi, Y Ahmad. (2013). Crown diameter prediction model for plantation-grown Neolamarckia cadamba. Journal of Tropical Forest Science, 25(4), 446–453.

Refbacks

  • There are currently no refbacks.