Autor(s): Vivi Yuskianti, Susumu Shiraishi
DOI: 10.20886/ijfr.2017.4.2.85-94


Producing seeds in seed orchards that retain a broad genetic diversity is important for the continued development of a species. The aim of this study was to find out the genetic diversity of, and genetic relationships between several populations of sengon (Falcataria moluccana) in the Candiroto seed orchard in Indonesia. Analysis using  twelve single nucleotide polymorphism (SNP) markers showed that the total population had a high level of genetic diversity (He = 0.359±0.128); the Wamena population in Papua had the highest level. The close genetic relationship between this and the population from East Java suggested that the latter may have been introduced from Wamena. There was also a close genetic relationship between the populations from Central and West Java and that from Mindanao Island in The Phillipines. The high genetic diversity  of sengon in the Candiroto seed orchard provides a good basis for selection and breeding.


Sengon (Falcataria moluccana), genetic diversity, genetic relationship, SNP markers, SNuPE analyses

Full Text:



Argent, G., Saridan, A., Campbell E. J. F., Fairweather G., Hadiah J. T., Middleton D.J., Pendry, C., Pinard, M., Warwick, M., & Yulita, K.S. (1996). Manual of the larger and more important non dipterocarp trees of central Kalimantan Indonesia. Forest Research Institute Samarinda, Forest Research Institute Samarinda Press, 685 pp.

Batley, J., Mogg, R., Edwards, D., O’Sullivan, H., & Edwards K .J. (2003). A high-throughput SNuPE assay for genotyping SNPs in the flanking regions of Zea mays sequence tagged simple sequence repeats. Molecular Breeding, 11: 111-120.

Brumfield, R.T., Beerli, P., Nickerson, D.A., & Edwards S.V. (2003). The utility of single nucleotide polymorphisms in inferences of population history. Trends in Ecology and Evolution, 18: 249-256.

Deulvot, C., Charrel, H., Marty, A., Jacquin, F., Donnadieu, C., Lejeune-Henaut I., Burstin, J., & Aubert, G. (2010). Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genome, 11: 468.

Foster, J.T., llan, G.J., Chan, A.P., Rabinowicz, P.D., Ravel, J., & Jackson, P. J. (2010). Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biology, 10: 13.

Gupta, P.K., Roy, J.K., & Prasad, M. (2001). Single nucleotide polymorphisms: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Current Science, 80: 524-535.

Inghelandt, D.V., Melchinger, A.E., Lebreton, C., & Stich, B. (2010). Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical Appllied Genetics, 120: 1289-1299.

Kang, K., Lindgren, D., & Mullion, T. (2001). Prediction of genetic gain and gene diversity in seed orchard crops under alternative management strategies. Theoretical Appllied Genetics, 103: 1099-1107.

Lacerda, D R., Acedo, M.D.P., Lemos Filho, J. P., & Lovato, M. B. (2001). Genetic diversity and structure of natural populations of Plathymenis reticulata (Mimosoideae), a tropical tree from the Brazilian Cerrado. Molecular Ecology, 10: 1143-1152.

Millar, M.A., Byrne, M., Nuberg, I., & Sedgley, M. (2008). High outcrossing and random pollen dispersal in a planted stand of Acacia saligna subsp. saligna revealed by paternity analysis using microsatellites. Tree Genetics & Genome, 4: 367-377.

Morin, P.A., Martien, K.K., & Taylor, B. L. (2009). Assessing statistical power of SNPs for population structure and conservation studies. Molecular Ecology Resources, 9: 66-73.

Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the Natural Academy of Sciences of the United States of America, 70: 3321-3323.

Norrgard, K., & Schultz J. (2008). Using SNP data to examine human phenotypic differences. Nature Education, 1: 1.

Osman, A., Jordan, B., Lessard, P.A., Muhammad, N., Haron, M.R., Riffin, N.M, Sinskey, A.J., CK. Rha, C.K., & Housman, D.E. (2003). Genetic diversity of Eurycoma longifolia inferred from single nucleotide polymorphism. Plant Physiology, 131: 1294-1301.

Poltri, S.N.M., Zelener, N., Rodrigueztraverso, J., Gelid, P., & Hopp, H. E. (2003). Selection of a seed orchard of Eucalyptus dunnii based on genetic diversity criteria calculated using molecular markers. Tree Physiology, 23: 625-632.

Seido, K., Widyatmoko, A.Y.P.B.C., & Nursinggih, H. (1993). Genetic variation at four allozyme loci in Paraserianthes falcataria, FTIP-No.12. Japan International Cooperation Agency (JICA) and Directorate General of Reforestation and Land Rehabilitation Ministry of Forestry Indonesia, 13 pp.

Seido, K., & Widyatmoko, A.Y.P.B.C. (1994). Genetic variation of natural stands of Paraserianthes falcataria at Wamena in Irian Jaya, FTIP-No.16. Japan International Cooperation Agency (JICA) and Directorate General of Reforestation and Land Rehabilitation Ministry of Forestry Indonesia, 18 pp.

Shiraishi, S., & Watanabe, A. (1995). Identification of chloroplast genome between Pinus densiflora Sieb. et Zucc and P. thunbergii Parl. based on polymorphisms in rbcL gene. Journal of Japanese Forest Society, 77: 429-436.

Siregar, U.J., Basyuni, M., Sudarmonowati, E., & Iriantono, D. (1998). Genetic diversity in a Paraserianthes falcataria provenance trial in Parung Panjang, Bogor Indonesia. In Proceedings in Third National Congress on Genetics, 18-19 November 1998, Malaysia: UKM, pp. 114-117.

Suharyanto, Rimbawanto, A., & Isoda K. (2002). Genetic diversity and relationship analysis of Paraserianthes falcataria revealed by RAPD marker. In: Rimbawanto, A. and Susanto, M. (eds), Proceedings of Advances in Genetic Improvement of Tropical Tree Species. Yogyakarta: Centre for Forest Biotechnology and Tree Improvement, pp. 81-88.

Susanto, M., & Hashimoto, K. (1996). General information of seed source establishment of Paraserianthes falcataria in Candiroto, Central Java Fiscal year 1995/1996, FTIP No.43. Japan International Cooperation Agency (JICA) and Directorate General of Reforestation and Land Rehabilitation Ministry of Forestry Indonesia, 10 pp.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionay genetics analysis using maximum likelihood, evolutionay distance, and maximum persimony methods. Molecular Biology and Evolution, 28: 2731-2739.

Vignal, A., Milan, D., Sancristobal, M., & Eggen, A. (2002). A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution, 34: 275-305.

Willing, E-M., Dreyer, C., & van Oosterhout, C. (2012). Estimates of genetic differentiaitoon measured by FST do not necessarily require large sample sizes when using many SNP markers. PloS ONE, 7: 8:e42649. doi:10.1371/journal.pone.0042649

Yeh, F.C., Yang, R-C., & Boyle, T. (1999). Popgene version 1.31. Microsoft Window-based Freeware for Population Genetic Analysis. Quick User Guide.

Yuskianti, V., & Shiraishi, S. (2010). Developing SNP markers and DNA typing using multiplexed single nucleotide primer extension (SNuPE) in Paraserianthes falcataria. Breeding Science, 60: 87-92.

Yuskianti, V. 2011. Fragmen polimorfik penanda RAPD untuk analisis genetik sengon (Falcataria moluccana). Jurnal Pemuliaan Tanaman Hutan 5: 55-61. (In Bahasa Indonesia with English abstract).


  • There are currently no refbacks.