MALAPARI (Pongamia Pinnata (L.) Piere) GROWTH ON THREE PLANTING PATTERNS WITH TRICHODERMA AND MYCORRHIZAE SP APPLICATION

Autor(s): Aditya Hani
DOI: 10.20886/ijfr.2021.8.2.229-239

Abstract

Malapari (Pongamia pinnata) is a potential plant for biodiesel and has the ability to grow on marginal land. Malapari cultivation has not yet been carried out due to low economic value. Agroforestry crop patterns are expected to provide intermediate results so that people would be interested in planting malapari. Planting on coastal land requires the right technology to produce optimal growth. This study aims to determine the effect of malapari cropping patterns and evaluate biological fertilizer application in the seedling phase after planting in the field. The research uses a split plot design (Split Plot Design) with the main factors that are the pattern of malapari planting and sub-plots that are the type of application of biofertilizer. The results obtained from the study showed that the interaction of cropping pattern treatment and biofertilizer application did not give significant growth to malapari; the combination of the application of organic manure, Trichoderma spp and mycorrhiza bio-fertilizers in the nursery yielded the largest malapari diameter growth after planting in the field at the age of 3 years.

Keywords

Agroforestry; attitude; biofertilizer; malapari; perception

Full Text:

PDF

References

Agus, C., Primananda, E., Faridah, E., Wulandari, D., & Lestari, T. (2019). Role of arbuscular mycorrhizal fungi and Pongamia pinnata for revegetation of tropical open-pit coal mining soils. International Journal of Environmental Science and Technology, 16(7), 3365–3374.

Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., John, R., Egamberdieva, D., & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontier Plant Science, 14(October).

Allfizar, Marlina, & Hasanah, N. (2011). Upaya pengendalian penyakit layu Fusarium oxysporum dengan pemanfaatan agen hayati cendawan FMA dan Trichoderma harzianum. Floratek, 6(8), 8–17.

Bachelot, B., Uriarte, M., McGuire, K. L., Thomson, J., & Zimmerman, J. (2016). Arbuscular mycorrhizal fungal diversity and Natural enemies promote coexistence of tropical tree species. Ecology, 98(3), 712–729.

Bado, B. V., Whitbread, A., & Manzo, M. S. (2021). Improving agricultural productivity using agroforestry systems: Performance of millet, cowpea and ziziphus-based croping systems in West Africa Sahel. Agriculture, Ecosystems and Environment, 305(107175), 1–10.

Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., … Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontier in Plant Science, 10(1068).

Bowles, T. M., Barrios-Massias, F. H., Charlisle, E. A., Cavagnaro, T. R., & Jackson, L. E. (2016). Effects ofarbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of The Total Environment, 566, 1223–1234.

Budi, S. W., Arty, B., Wasis, B., Wibowo, C., & Sukendro, A. (2020). Influence of arbuscular mycorrhizal fungi and soil ameliorants on the mycorrhizal colonization, Chlorophyll content, and performance growth of Two tropical tree seedlings grown in soil media with high aluminum content. Malaysia Applied Biology, 49(1), 41–53.

Dehariya, K., Shukila, A., Ganaie, M. A., & Vyas, D. (2015). Individual and interactive role of trichoderma and mycorrhizae in controlling wilt disease and growth reduction in Cajanus cajan caused by Fusarium udum. Archives of Phytopathology and Plant Protection, 48(1), 50–61.

Dendang, B., & Hani, A. (2018). Peningkatan kualitas bibit nyamplung (Calophyllum inophyllum L.) dan malapari (Pongamia pinnata L.) dengan aplikai mikoriza dan Trichoderma spp. Jurnal Pemuliaan Pohon, 12(1), 75–84.

Dwitama, M. I., Nazib, M., & Sitepu. (2016). Konversi minyak biji malapari (Pongamia pinnata L.) menjadi biodiesel melalui pemanfaatan katalis heterogen abu sekam padi termodifikasi Li. Jurnal Kimia, 10(2), 236–244.

Fahey, C., Winter, K., Slot, M., & Kitijima, K. (2016). Influence of arbuscular mycorrhizal colonization on whole-plant respiration and thermal acclimation fo tropical tree seedlings. Ecology and Evolution, 6(3), 859–870.

Febritasari, F., Arpiwi, N., & Wahyuni, I. G. A. S. (2016). Karakteristik dan analisis hubungan kekerabatan malapari (Pongamia pinnata (L.) Pierre) sebagai tanaman penghasil minyak di dua aksesi. Jurnal Metamorfosa, III(2), 74–81.

Ginting, A. E., Dewi, & Yuliani, S. K. (2018). Pengaruh mikoriza vesikular dan Trichoderma harzianum pada pertumbuhan tanaman sawi hijau (Brassica juncea L.) di tanah liat dan tanah pasir. LenteraBio, 7(3), 231–235.

Gresshoff, P. M., Hayashi, S., Biswas, B., Mirzaei, S., Indrasumunar, A., Reid, D., … Fergusona, B. J. (2015). The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production. Journal of Plant Physiology, 172, 128–136.

Hani, A., Indrajaya, Y., Suryanto, P., & Budiadi. (2016). Dry land agroforestry practices in Menoreh Hills, Kulon Progo. Agrivita, 38(2), 193–203.

Hardjowigeno. (1987). Ilmu tanah. Yogyakarta: Mediyatama Sarana Perkasa.

Jayusman. (2018). Penetapan strategi pemuliaan untuk mendukung pengembangan malapari (Pongamia pinnata L.) sebagai Penghasil Biofuel. Proceeding Biology Education Conference, 15(1), 737–742.

Jha, S., Kaechele, H., & Sieber, S. (2021). Faktor influencing the adoptionof agroforestry by smalholder farmer houehold in Tanzania: Case studies from Morogoro and Dodoma. Land Use Policy, 103(105308), 1–15.

Ji, S., Liu, Z., Liu, B., & Wang, Y. (2019). Comparative analysus of biocontrol agent Trichoderma asperellum ACCC30536 transcriptome during its interaction with Populus davidiana x P. alba var.pyramidalis. Microbiological Research, 227(126294), 1–10.

Kapulnik, Tsros, L., Zipori, I., Hazanovsky, M., & Wininger, S. (2010). Effect of AMF application on growth, productivity and susceptibility to verticilium wilt of olives grown under desert conditions. Symbiosis, 52(2), 103–111.

Kashyap, P. L., Rai, P., Srivastava, A. K., & Kumar., S. (2017). Trichoderma for climate resilient agriculture. World Journal of Microbiology and Biotechnology, 33(8), 155.

Montesinos, B. S., Dianez, F., Moreno-Gavira, A., Gea, F. J., & Santos, M. (2020). Role of Trichoderma aggressivum F. europaeum as plant-growth promoter in horticulture. Agronomy, 10(7).

Naik, K., Mishra, S., Srichandan, H., Singh, P. K., & Sarangi, P. K. (2019). Plant growth promoting microbes: potential link to sustainable agriculture and environtment. Biocatalysus and Agricultural Biotechnology, 21(101326), 1–12.

Nganga, W. B., K, O. N., Macharia, M. J., Kiboi, N. M., Adamtey, N., & Ngetich, K. F. (2020). Multi-influenceing-factors evaluation for organic-based soil fertility technologies out-scaling in Upper Tana Cathment in Kenya. Scientific African, 7(e00231), 1–16.

Nicholas, T. A., Venkatakrishna, A., Joy, N., & Mariadhas, A. (2019). Performance n emission analysis on diesel engine fuelled with neat pongamia biodiesel. International Journal of Ambient Energy., (June), 1–7.

Poveda, J., Hermosa, R., Monte, E., & Nicolas, C. (2019). Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Scientific Reports, 9(11650).

Priosambodo. (2018). Vegetasi hutan pantai Sabutung Sulawesi Selatan. Jurnal Ilmu Alam dan Lingkungan, 9(17), 19–30.

Rusdiana, O., & Lubis, R. S. (2012). Pendugaan korelasi antara karakteristik tanah terhadap cadangan karbon (Carbon stock) pada hutan sekunder. Jurnal Slvikultur Tropika, 3(1), 14–21.

Santi, W. P., Defiani, R. M., & Proborini, M. W. (2019). Potensi inokulasi jamur Trichoderma viride dan Glomus sp. Terhadap produktivitas Capsicum annum L. Jurnal Mikologi Indonesia, 3(2), 95–103.

Shao, T., Zhao, J., Liu, A., Long, X., & Rengel, Z. (n.d.). Effects of soil physicochemical properties on microbial communities in different ecological niches in coastal area. Aplied Soil Ecology, 150(103486), 1–9.

Simanjuntak, D., Fahridayanti, & Susanto, A. (2013). Efikasi mikoriza dan Trichoderma sebagai pengendali penyakit busuk pangkal batang (Ganoderma) dan sebagai pemacu pertumbuhan di pembibitan kelapa sawait. Widyariset, 16(2), 233–242.

Simpen, I. N., Negara, I. M. S., & Puspawati, N. M. (2018). Simpen, I.N., Negara, I.M.S. & Puspawati, N M. 2018. The characteriszation of hetergeneous nanocatalyst of biohydroxyapatite-Lithium and its application for converiting malapari seed oil (Milletia pinnata L.) to biodiesel. Oriental Journal of Chemistry, 34(4), 1817–1823.

Singh, P., Singh, M., & Tripathi, B. (2013). Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma, 250, 663–669.

Susanto, M., & Baskorowati, L. (2018). Pengaruh genetik dan lingkungan terhadap pertumbuhan sengon (Falcataria molucanna) ras lahan Jawa. Bioeksperimen, 4(2), 35–41.

Talbi, Z., Chliyeh, M., Mouria, B., Asari, A. El, Aguil, F. A., Touhami, A. O., … Douira, A. (2016). Effect of double inoculation with endomycorrhizae and Trichoderma harzanium on the growth of carob plants. International Journal of Advances Inpharmacy, Biology and Chemistry, 5(1), 44–58.

Thiam, S., Villamor, G. B., Kyei-Baffour, N., & Matty, F. (2019). Soil salinity assessment and coping strategies in the coastal agricultural landscape in Djilor district, Senegal. Land Use Policy, 88(104191), 1–9.

Uharani, K. V., Naik, D., & Manjunatha, R. L. (2019). Composition and advantages in agriculture : A review. Journal of Pharmacognosy and Phytochemistry, 8(3), 2181–2187.

Vimal, S. R., Singh, J. S., Arora, N. K., & Singh, S. (2017). Soil-plant-microbe interaction in stressed agriculture management: a review. Pedosphere, 27(2), 177–192.

Xia, J. bao, Ren, J., Zhang, S., Wang, Y., & Fang, Y. (2019). Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China. Geoderma, 349, 25–35.

Xu, Z., Shao, T., Lv, Z., Yue, Y., Liu, A., Long, X., … Rangel, Z. (2020). The mechanisms of improving coastal saline soil by planting rice. Sciene of the Total Environment, 703(135529), 1–11.

Zhang, W., Chong, W., Rui, X., & Li-jie, W. (2019). Effect of salinity on the soil microbial community and soil fertility. Journal of Integrative Agriculture, 18(6), 1360–1368.

Refbacks

  • There are currently no refbacks.