ANATOMICAL INVESTIGATION OF FIVE GENERA THE LEAST-KNOWN TIMBER OF APOCYNACEAE AND THEIR POTENTIAL UTILIZATION

Autor(s): Sari Delviana Marbun, Vidya Fatimah Astutiputri, Ratih Damayanti, Hadisunarso Hadisunarso, Deazy Rachmi Trisatya, Djarwanto Djarwanto, Listya Mustika Dewi, RGH Rahmanto, Dyah Ayu Agustiningrum, Rohmah Pari, Imran Arra’d Sofianto, Yunita Lisnawati, Titi Kalima, Sona Suhartana, Setiowati Setiowati, Krisdianto Krisdianto, Marfuah Wardhani, Agus Ismanto, Yuniawati Yuniawati, Agung Wahyu Nugroho, Sri Utami, Wahyu Dwianto, Widya Fatriasari, Adik Bahanawan, Danang Sudarwoko Adi, Sarah Augustina, Hengki Siahaan
DOI: 10.59465/ijfr.2023.10.1.75-90

Abstract

Doubtlessly, wood identification is critically important for a number of sectors, including government organizations, the wooden-based industry, museums, law enforcement, and scientists working in botany, ecology, forestry, and wood technology. Unfortunately, most wood species listed as “the least-known species” lack essential knowledge or their anatomical features and basic properties to promote their usage. This research aimed to investigate the anatomical characteristics and fiber quality of the least-known timber species of Apocynaceae family, which are authentic wood collection from Xylarium Bogoriense, namely, Ervatamia sphaerocarpa, E. aurantiaca, Kopsia flavida, Lepiniopsis ternatensis, Plumeria acuminata, P. rubra, and Voacanga foetida. Wood samples have indistinct growth ring boundaries, diffuse-porous vessels in diagonal and/or radial pattern, vessels in radial multiples of 4 or more cells, simple perforation plate, alternate intervessel pits; distinct borders of vessel-ray pits, similar with those of intervessel pits in size and shape throughout the ray cell, and septate fibers with simple pits to minutely bordered pits which are common in radial and tangential walls. Based on the fiber length and the derived values of fiber dimension, some species are classified into Quality Class II and III, and the rest of them are classified into Quality Class II or III for pulp and paper manufacturing. Based on general characteristics, commonly Apocynaceae can be used as handicrafts raw material. Based on the fiber quality, some species which are classified into Quality Class II, are predicted to have potential as pulp and paper material with medium quality.

Keywords

Anatomical properties; Apocynaceae; fiber dimensions; least-known species; pulp and paper; Xylarium Bogoriense

Full Text:

PDF

References

Abdurachman, Akbar A, …., Yuniawati. (2020). Vademecum Kehutanan Indonesia.Kementerian Lingkungan Hidup dan Kehutanan.

Ali, A. C., Uetimane Jr, E., Lhate, I. A., & Terziev, N. (2008). Anatomical characteristics, properties, and use of traditionally used and lesser-known wood species from Mozambique: a literature review. Wood Science and Technology, 42, 453-472.

Areo, O. S. (2021). Wood properties and natural durability of Artocarpus altilis (Parkinson Ex F.A. Zorn) Fosberg (Unpublished doctoral dissertation). University of Ibadan, Ibadan.

Baas, P., Esser, P. M., van der Westen, M. E. T., & Zandee, M. (1988). Wood anatomy of the Oleaceae. IAWA Bulletin, 9(2), 103-182.

Brunner, M., Appiah-Kubi, E., Zurcher, N., Reinhard, M., & Kankam, C. K. (2008). WAWABIMA: outstanding mechanical properties of some lesser-known timber species in Ghana. Proceedings of world conference

on timber engineering, WCTE, 2-9.

Chowdhury, M. Q., Sarker, S. K., Deb, J. C., & Sonet, S. S. (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology, 47, 797-813.

Chowdhury, P., Hossain, M. K., Hossain, M. A., Dutta, S., & Ray, T. K. (2017). Status, wood properties, and probable uses of lesser-used

species recorded from Sitapahar Reserve Forest of Bangladesh. Indian Forester, 1439(12), 1241-1248.

Damayanti, R. (2010). Macro, micro, and ultramicroscopic structure of superior Indonesia teak and conventional teak (Master’s thesis). Institut Pertanian Bogor, Bogor.

Damayanti, R., & Dewi, L. M. (2019). Wood anatomy and fiber quality of the least-known timbers belong to Actinidiaceae from Indonesia. Wood

Research Journal, 10(2), 33-38.

Damayanti, R., & Rulliaty, S. (2010). Anatomical properties and fiber quality of five potential commercial wood species from Cianjur, West

Java. Journal of Forestry Research, 7(1), 53-69.

Damayanti, R., & Rulliaty, S. (2011). Anatomical structure and fibre quality of least known wood timbers belongs to bignoniaceae from

Indonesia. Proceeding of International Conference of Indonesian Forestry Researchers (INAFOR).

Fromm, J. (2013). Cellular aspects of wood formation. Heidelberg: Springer.

Glass, S. V., & Zelinka, S. L. (2010). Moisture relations and physical properties of wood. In R. J. Ross (Eds.), Wood handbook: Wood as

an engineering material (pp. 70-88). Madison: USDA Forest Service.

Haag, V., Koch, G., Melcher, E., & Welling, J. (2020). Characterization of the wood properties of Cedrelinga cateniformis as substitute for timbers used for window manufacturing and outdoor applications. Maderas: Ciencia Y Tecnologia, 22(1), 23-36.

Hamdan, H., Nordahlia, A. S., Anwar, U. M. K., Iskandar, M. M., Omar, M. K. M., & Tumirah. (2020). Anatomical, physical, and mechanical properties of four pioneer species in Malaysia. Journal of Wood Science, 66(59), 1-9.

Hedge, N. (2019). Physical and mechanical properties of lesser-known timber species of Mizoram (Unpublished doctoral dissertation). Mizoram

University, Aizawl.

Heyne, K. (1987). De Nuttige planten van Indonesië, Vol. 3. In M. S. Hardjodarsono, S. Soerohaldoko, Y. I. Mandang, S. R. Gadas, S. Partosatmoko, B. Moeljosoedirdjo, O. S. Hardjodarsono, & S. W. Sapoetro (translator). Jakarta: Yayasan Sarana Wana Jaya.

Idris, M. M., Rachman, O., Pasaribu, R. A., Roliadi, H., Hadjib, N., Muslich, M., Jasni, Rulliaty, S. & Siagian, R. M. (2008). A handbook of Selected Indonesian Wood Species. Jakarta: Indonesian Sawmill and Woodworking Association.

Ingle, H. D., & Dadswell, H. E. (1953). The anatomy of the timbers of the South-West Pacific. II. Apocynaceae and Annonaceae. Australia Journal of Botany, 1, 1-26.

Korkut, S. (2011). Physical and mechanical properties and the use of lesser-known native silver lime (Tilia argentea Desf.) wood from Western Turkey. African Journal of Biotechnology, 10(76), 17458-17465.

Mandang, Y. J., & Pandit, I. K. N. (2002). Guidelines for wood identification in the field. In: S. Prawirohatmodjo, & S. Danimihardja (eds). Bogor: PROSEA.

Marbun, S. D., Wahyudi, I., Suryana, J., & Nawawi, D. S. (2019). Anatomical structures and fiber quality of four lesser-used wood species

grown in Indonesia. Journal of The Korean Wood Science and Technology, 47(5), 617-632.

Metcalfe, C. R. & Chalk, L. (1983). Anatomy of the dicotyledons: wood structure and conclusion of the general introduction, Vol. 2. Oxford: Oxford University Press.

Oey, DS. (1964). Specific gravity of Indonesian woods and its significance for practical use (in Indonesian). Bogor: Pusat Penelitian dan Pengembangan Hasil Hutan.

Pandit, I. K. N., & Ramdan, H. (2002). Anatomy of wood: An introduction to the properties of wood as a raw material. Bogor: Yayasan Penerbit Fakultas Kehutanan Institut Pertanian Bogor.

Rulliaty, S. (1994). Wood quality indicators as estimator of juvenile wood in mahogany (Swietenia macrophylla King) from forest plantation in Sukabumi, West Java, Indonesia (Master’s Thesis). University of Philippines Los Banos, Los Banos.

Sass, J. E. (1958). Botanical microtechnique. IOWA: The IOWA State Collage Press.

Seng, O. D. (1990). Specific gravity of Indonesian woods and its significance for practical use. In: P. H. Soewarsono (translator). Bogor: Pusat Penelitian dan Pengembangan Hasil Hutan Press.

Siam, N. A., Lipeh, S., Uyup, M. K. A., Juhari, M. A. A. A., Talip, N., Amri, C. N. A. C., & Abdulla, N. A. (2022). Anatomical and physical properties of three lesser-known timber species from Malaysia. Bioresources, 17(1), 1090-1105.

Supartini, Dewi, L. M., Kholik, A., & Muslich, M. (2013). Anatomical structure and fiber quality of Shorea hopeifolia (Heim) Symington from

East Kalimantan. Journal of Tropical Wood Science and Technology, 11, 29-37.

Tripathi, S.N.; Sahney, M.; Tripathi, A.; Pandey, P.; Jatav, H.S.; Minkina, T.; Rajput, V.D. (2023). Elucidating the anatomical features, adaptive and ecological significance of Kopsia fruticosa Roxb. (Apocynaceae). Horticulturae, 9(3), 387. doi://10.3390/horticulturae9030387.

Jr Uetimane, E., & Ali, A. C. (2011). Relationship between mechanical properties and selected anatomical features of ntholo (Pseudolachnostylis maprounaefolia). Journal of Tropical Forest Science, 23(2), 166-176.

Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products, 19, 245-254.

Wahyudi, I. (2013). The relationship between the anatomical structure of wood and the properties of wood, its uses, and its processing. Bogor: Forestry Engineering and Forest Product Processing R&D Center FORDA-Ministry of Forestry.

Wheeler, E. A., Baas, P., & Gasson, P. E. (1989). IAWA list of microscopic features for hardwood identification. IAWA Bulletin,

(3), 219 – 332.

Wiedenhoeft, A. (2010). Structure and function of wood. In R. J. ROSS (Eds.), Wood handbook: wood as an engineering material (pp. 52-69).

Madison: USDA Forest Service.

Refbacks

  • There are currently no refbacks.