KARAKTERISASI EMISI PAHs HASIL PEMBAKARAN DUPA DALAM RUANG EKSPERIMEN

Retno Puji Lestari, Samroeng Chantchaemsai, Panida Navasumrit

Abstract


Pembakaran dupa yang merupakan bagian dari ritual agama dan budaya mayoritas komunitas Oriental, diketahui berpotensi menyebabkan efek berbahaya akibat emisi yang menghasilkan berbagai jenis polutan. Telah dilakukan identifikasi senyawa Polycylic Aromatic Hydrocarbons (PAHs) yang berasal dari emisi hasil pembakaran beberapa tipe dupa dalam sebuah ruang eksperimen. Studi ini dilakukan di Chulabhorn Research Institute, Thailand dengan tujuan untuk mengetahui tingkat emisi PAHs yang terikat dalam partikulat pada sampel-sampel dupa dari tiga negara (Indonesia, Thailand, dan Vietnam) yang dipilih secara acak. Dari hasil analisis PAHs menggunakan High Performance Liquid Chromatography dengan Fluorescence Detector (HPLC-FLD) diketahui bahwa komponen dominan dalam sampel dupa Indonesia dan Thailand adalah fluorenthane (Flu) dengan konsentrasi masing-masing 8.2±1.0 dan 3.5±0.5 mg/m3, sementara sampel Vietnam didominasi oleh komponen chrysene (CHR) (34.5±10.6 μg/m3). Sampel dupa Vietnam mengemisikan total PAHs ~5 kali lebih tinggi dari dupa Indonesia dan ~8 kali lebih tinggi dari dupa Thailand. Seluruh sampel mengemisikan Benzo[a]pyrene (BaP) dalam level serupa, meskipun konsentrasi dalam dupa Vietnam masih ~1.3 kali lebih tinggi dari dupa Indonesia dan ~1.8 kali dari dupa Thailand. Sementara untuk nilai BaP ekivalen, dupa Vietnam ~3.7 kali dan ~7kali lebih tinggi dari sampel Indonesia dan Thailand.

Keywords


polusi udara, HPLC-FLD, total PAHs, BaP, BaP ekivalen

Full Text:

PDF

References


(1) Nazaroff WW. Indoor particle dynamics. Indoor air. 2004;14 Suppl 7:175-83.

(2) Long CM, Suh HH, Koutrakis P. Characterization of Indoor Particle Sources Using Continuous Mass and Size Monitors. J Air Waste Man Assoc. 2000;50(7):1236-50

(3) Navasumrit P, Arayasiri M, Hiang OMT, Leechawengwongs M, Promvijit J, Choonvisase S, et al. Potential health effects of exposure to carcinogenic compounds in incense smoke in temple workers. Chem Biol Interact. 2008;173(1):19-31.

(4) Chiang KC, Liao CM. Heavy Incense Burning in Temples Promotes Exposure Risk from Airborne PMs and Carcinogenic PAHs. The Science of the total environment. 2006;372(1):64-75.

(5) Chiang K-C, Chio C-P, Chiang Y-H, Liao C-M. Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. J Hazard Mater. 2009;166(2):676-85.

(6) Yang T, Lin T, Wu J, Jhuang F. Characteristics of Polycyclic Aromatic Hydrocarbon Emissions of Particles of Various Sizes from Smoldering Incense. Bulletin of Environmental Contamination and Toxicology. 2012;88(2):271-6.

(7) Friborg JT, Yuan J-M, Wang R, Koh W-P, Lee H-P, Yu MC. Incense use and respiratory tract carcinomas: a prospective cohort study. Cancer 2008;113(7).

(8) Tse L, Yu I, Qiu H, Au JS, Wang XR. A Case-referent Study of Lung Cancer and Incense Smoke, Smoking, and Residential Radon in Chinese Men. Environ Health Persp. 2011;119(11):1641-6.

(9) Lin TS, Shen FM. Trace Metals in Chinese Joss Stick Smoke. Bulletin of Environmental Contamination and Toxicology. 2003;71(1):135-41.

(10) Lee R, Lin J. Gaseous aliphatic aldehydes in smoke from burning raw materials of Chinese joss sticks. Bulletin of Environmental Contamination and Toxicology. 1996;57(3):361-6.

(11) Wang B, Lee S, Ho K. Chemical composition of fine particles from incense burning in a large environmental chamber. Atmos Environ. 2006;40(40):7858-68.

(12) Qureshi S. Preliminary studies on general and genetic toxicity of incense (Bakhour) inhalation in Swiss albino mice. World J Med Sci. 2013;8(2):79-84.

(13) Yang T, Lin T-S, Chang M. Characteristics of Emissions of Volatile Organic Compounds from Smoldering Incense. Bull Environ Contam Toxicol. 2007;78(5):308-13.

(14) Lin J, Tang C. Characterization and aliphatic aldehyde content of particulates in Chinese incense smoke. Bulletin of Environmental Contamination and Toxicology. 1994;53(6):895-901.

(15) Lin TC, Chang FH, Hsieh JH, Chao HR, Chao MR. Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple. Journal of hazardous materials. 2002;95(1-2):1-12.

(16) Lin JM, Lee JK. Vaporous and particulate bound polycyclic aromatic hydrocarbons in Chinese incense smoke. Toxicol Environ Chem. 1998;67(1-2):105-13.

(17) Lung SC, Hu SC. Generation rates and emission factors of particulate matter and particle-bound polycyclic aromatic hydrocarbons of incense sticks. Chemosphere. 2003;50(5):673-9.

(18) Lin TC, Yang CR, Chang FH. Burning characteristics and emission products related to metallic content in incense. Journal of hazardous materials. 2006;140(1-2):165-72.

(19) Lin TC, Krishnaswamy G, Chi DS. Incense Smoke: Clinical,

Structural and Molecular Effects on Airway. Clin Mol Allergy. 2008;6:3.

(20) USEPA. Polycyclic Aromatic Hydrocarbons (PAHs)2008.

(21) ATSDR. Toxicological profile for Polycyclic aromatic hydrocarbons (PAHs). In: Registry USDoHHSAfTSaD, editor. Atlanta: U.S. Governement Printing Office; 1995.

(22) Lin T-C, Yang C-R, Chang F-H. Burning characteristics and emission products related to metallic content in incense. Journal of hazardous materials. 2007;140(1):165-72.

(23) Yang CR, Lin TC, Chang FH. Particle Size Distribution and PAH Concentrations of Incense Smoke in a Combustion Chamber. Environ Poll. 2007;145(2):606-15.

(24) WHO. WHO Guidelines for Indoor Air Quality: Selected Pollutants. Copenhagen: WHO Regional Office for Europe; 2010.




DOI: https://doi.org/10.20886/jklh.2016.10.1.8-16

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Jurnal Ecolab

This Journal Index by:

  

 

 

  

e-ISSN: 2502-8812, p-ISSN: 1978-5860
Ecolab is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License