PROSPEK PENGGUNAAN KAYU RENDAH LIGNIN HASIL TEKNOLOGI DNA UNTUK PROSES PULPING YANG EFISIEN DAN RAMAH LINGKUNGAN

N. Sri Hartati

Abstract


Pemisahan lignin dari selulosa membutuhkan input bahan kimia dan energi yang tinggi yang berdampak pada tingginya biaya produksi dan resiko ekologi yang ditimbulkannya. Keberadaan lignin pada sel tanaman merupakan faktor pembatas efisiensi pengolahan material lignoselulosa menjadi produk-produk industri berbahan dasar kayu termasuk pulp baik secara kimia maupun biologis. Kadar dan komposisi lignin yang terkandung dalam tanaman akan mempengaruhi efisiensi proses pulping. Oleh karena itu bahan baku pulp dengan kadar lignin rendah atau yang memiliki komposisi lignin dengan reaktivitas tinggi lebih mudah dipisahkan dari selulosa, sehingga akan sangat menguntungkan bagi industri pulp karena akan menghemat energi dan biaya. Pada tulisan ini ditinjau aspek produksi dalam industri pulp terkait dengan pengelolaan fungsi lingkungan, teknologi alternatif untuk modifikasi kadar lignin kayu melalui teknologi DNA untuk menunjang produksi pulp yang efisien dan ramah lingkungan.

Keywords


Lignin, kayu, pulp, rekayasa genetika,

Full Text:

PDF

References


(1) Teraäs T. 2007. World pulp and paper demand with special emphasis on bleached hardwood market pulp. www. Parliament.tas.gov.aUL.

(2) Kantor Menteri Negara Lingkungan Hidup. 1994. Hasil rapat koordinasi Nasional I. Pengelolaan lingkunagn hidup dan pembangunan berkelanjutan. Jakarta, 22-24 Nopember 1994.

(3) Siagian RM, Roliadi H, Suprapti S, Komarayati S. 2003. Studi peranan fungi pelapuk putih dalam proses biodelignifikasi kayu sengon (Paraserianthes falctaria (L.) Nielsen). Jurnal Ilmu dan Teknologi kayu Tropis. 1(1) : 47-56.

(4) Johnston PA, Stringer R Santilo D, Stephenson AD, Labounskaia IP, McCartney HM. 1996. Towards zero effluent pulp and paper production: The pivotal role of totally chlorine free bleaching. Technical Report 7/96. November 28. 1996. Greenpeace laboratories.

(5) Verma SR. 2014. Lignin genetic engineering for improvement of wood quality: Applications in paper and textile industries, fodder and bioenergy production. South African Journal of Botany. Volume 91: 107–125.

(6) Pari G. 1996. Analisis komponen kimia dari kayu sengon dan kayu karet pada beberapa macam umur. Buletin Penelitian Hutan. 14(8): 321-327.

(7) Fengel D, Wegener G. 1995. Kimia Kayu, Ultrastruktur dan Reaksi-reaksi. Sastrohamidjojo H, penerjemah; Prawirohatmodjo S, editor. Yogyakarta: Gajah Mada University Press. Terjemahan dari Wood: Chemistry, Ultrastructure, Reactions.

(8) Syafii W, Siregar IZ. 2006. Sifat Kimia dan Dimensi Serat Kayu Mangium. Acacia mangium Willd.) dari Tiga Provenans. J. Tropical Wood Science & Technology. 4(1): 28-32.

(9) Hartati NS, Sudarmonowati E, Suharsono, Sofyan K. 2011. Analisis kuantitatif dan uji histokimia lignin sengon (Paraserianthes falcataria). Widyariset, Vol. 14, No.3, Widyariset, Vol. 14, No.3: 526-534.

(10) Davin LB, Lewis NG. 2005. Lignin primary structures and dirigent sites. Current Opinion in Biotechnol 16 (4): 407–415.

(11) Setyorini, D. 2002. Minimisasi limbah dalam industri pulp and paper. Lembaga kajian ekonomi lahan basah. www.terranet.or.id.

(12) Khan WP, Nok AJ. 2003. production and regulation of lignin

degrading enzymes from Lentinus squarrosulus (mont.) Singer and Psathyrella atroumbonata Pegler. African Journal of Biotechnology. Vol. 2 (11): 444-447.

(13) Soden DM, Dobson DW. 2001. Differential regulationof laccase gene expression in Pleurotus sajor-caju. . 147: 1755-1763.

(14) Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol. 5(2):53-63.

(15) Kofujita H, Asada Y, kuwahara M. 1991. Alkyl-aryl cleavage of phenolic b-O-4-lignin substructure model compound by Mn (II)-Peroxidase isolated from Pleurotus ostreatus.Mokuzai Gakkaishi. 37(6): 555-561.

(16) Idiyanti T.1999. Isolasi enzim pelapuk putih isolate PSM01. Prosiding seminar Nasional Kimia VI. Yogyakarta, 24-25 September 1999.

(17) Higuchi T. 1980. Lignin Structure and Morphological Distribution in Plant Cell Walls. Lignin Biodegradation. In. Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications. Kirk, K.T. (ed). CRC Press, Inc. Florida.

(18) Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R. 2004. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products 19: 245–254.

(19) U.S. Departement of Energi. 2006. Lignocellulosic biomass characteristics. Biofuelsjjoint roadmap. June 2006.

(20) Baucher M., Halpin C, Conil MP, Boerjan W. 2003. Genetic engineering and impact on pulping. Critical Reviews in Biochemistry and Molecular Biology. 38(4): 305-350.

(21) Boudet AM, Kajita S, Pettenati J, Goffner D. 2003. Lignin and lignosellulosics: a better control of synthesis for new and improved uses. Trends in Plant Sci 8(12): 576-581.

(22) Strauss SH., Coventry P, Campbell M, Pryor M, Burley J. 2001. Certification of genetically modified forest plantations. International Forestry Reviews. 3(2): 85-102 The pulp pollution primer. 1999. www.rfu.org.

(23) Haufe KD, Lee SP, Subramaniam R, Douglas CJ. 1993. Combinatorial interaction between positive and negative cis-acting elements control spatial patterns of 4CL1 expression in transgenic tobacco. Plant J 4: 235-253.

(24) Zhang X, Chiang V. 1997. Molecular Cloning of 4-Coumarate:Coenzyme A Ligase in Loblollv Pine and the Roles of This Enzvme in the Biosynthesis of Lignin in Compression Wood. Plant Physiol Vol 113: 65-74.

(25) Lee D, Meyer K, Chapple C, Douglas C. 1997. Antisense suppression of 4-coumarate:coenzyme A ligase activity in arabidopsis leads to altered lignin subunit composition. The Plant Cell 9: 1985-1998.

(26) Zhong R, Morrison WH. 2000. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol. 124(2): 563-578.

(27) Kao, Y.Y., Harding, S.A. & Tsai, C.J. 2002. Differential expression of two distinct phenylalanine ammonia-lyase genes ini condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol. 130(2): 796-807.

(28) Ibrahim RK., Bruneau A. & Bantignies B. 1998. Plant O-methyltransferases: molecular analysis, common signature and classification. Plant molec Biol. 36: 1-10.

(29) He XZ, Reddy JT, Dixon RA. 1998. sterss responses in alfalfa (Medicago sativa L. XXII.). c DNA cloning and characterization of an elicitor inducible isoflavone 7-O-methyltransferase. Plant Molec Biol 36: 43-54.

(30) Allina SM., Pri-hadash A., Theilmann DA, Ellies BE, Douglas CJ. 1998. 4-Coumarate: coenzyme A ligase in hybrid poplar. Properties of native enzymes. Plant Physiol. 116: 743-754.

(31) Ehlting J, Büttner D, Wang Q, Douglas, CJ, Somssich IE, Kombrink E. 1999. Three 4-coumarate: coenzyme A ligase (4CL) in Arabidopsis thaliana reperesent two evolutionary divergent 4CL classes in angiosperm plants. Plant J. 19: 9-20.

(32) Chukovic D, Ehlting J., VanZipffle JA, Douglas CJ. 2001. Sructure and evolution of 4-coumarate: coenzyme A ligase (4CL) gene families. Biol Chem. 382: 645-654.

(33) Ehlting J, Shin JJ Dougla, .J. 2001. Identification of 4-coumarate: coenzyme A ligase (4CL) substrate recognition domains. Plant J. 27: 455-465.

(34) Ralph J., Hatfield RD, Sederoff RR , Mackay JJ. 1998. Variations in lignin: what do recent studies on lignin-biosynthetic pathway mutans and transgenics revbeal about lignification?. Research Summaries. US Dairy Forage Research Center: 34-38.

(35) Wesley SV, Hellwell. 2001. Construct design for efficient, effective and high throughput gene silencing in plants. Plant J 27(6): 581-590.

(36) Sederoff, R. 1999. Building better trees with antisense. Nat Biotech. August 17: 750-751.

(37) Harding S, Leshkevich J, Chiang V, Tsai C. 2002. Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme A ligases with spatially distinct metabolic roles in quaking aspen. Plant Physiol 128(2): 428–438.

(38) Lapierre C , Pollet B, Conil MP, Toval G, Romero J, Pilate G, Leple JC. Boerjan W, Ferret V, Nadai V, Jouanin L. 1999. Structural alterations of lignin in transgenik poplars with depressed cinnamyl alcohol dehtydrogenase or caffeic acid )-methyltransferase activity have an opposite impact on the efficiency of industrial Kraft pulping. Plant Physiol 119: 153-163.

(39) Welker CM, Balasubramanian VK, Petti C, Rai KM, DeBolt S, Mendu V. 2015. Engineering Plant Biomass Lignin Content and composition for Biofuels and Bioproducts. Energies. 8: 654-7676.

(40) Coventry P. 2001. Forest certification and genetically engineered trees: will the two ever be compatible?. O.F.I. Occasional papers No.53. Oxford Forest Institute.




DOI: https://doi.org/10.20886/jklh.2016.10.1.29-40

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Jurnal Ecolab

This Journal Index by:

  

 

 

  

e-ISSN: 2502-8812, p-ISSN: 1978-5860
Ecolab is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License