Komposisi Kimia Deposisi Basah di Jakarta, Serpong, Bandung, Kototabang, dan Maros Selama Tahun 2015-2019

Retno Puji Lestari, MS Nugraha, Asri Indrawati, Suryanti Suryanti, Eka Suharguniyawan, Sri WS Khotijah, Bambang Hindratmo, Ricky Nelson, Dyah Aries Tanti

Abstract


Komposisi Kimia Deposisi Basah di Jakarta, Serpong, Bandung, Kototabang, dan Maros Selama Tahun 2015-2019. Dalam dekade terakhir, peningkatan konsumsi bahan bakar fosil yang berasal dari pembangunan ekonomi yang cepat dari sektor transportasi dan kegiatan industri telah menghasilkan emisi berbagai polutan udara. Hal tersebut menyebabkan masalah lingkungan di seluruh dunia, tak terkecuali di Indonesia. Deposisi asam yang diakibatkan oleh pencemaran udara masih merupakan isu wilayah di Asia. Jaringan Pemantauan Deposisi Asam di Asia Timur (EANET) yang mencakup Asia Timur Laut dan Tenggara, telah melakukan kegiatan pemantauan deposisi asam dan pengaruhnya terhadap ekosistem. Terdapat 5 (lima) lokasi pemantauan deposisi asam di Indonesia yang tergabung dalam EANET, yaitu Jakarta, Serpong, Bandung, Kototabang, dan Maros. Parameter air hujan yang dianalisis adalah pH, daya hantar listrik, Na+, K+, Ca2+, Mg2+, NH4+, Cl-, NO3-, dan SO42-. pH air hujan dapat mengindikasikan potensi terjadinya deposisi asam. Selama tahun 2015-2019, rata-rata tingkat keasaman  air hujan di Jakarta, Serpong, Bandung, Kototabang, dan Maros masing-masing adalah 4,85, 5,17, 5,55, 5,23, dan 5,28. Meskipun masih terindikasi mengalami efek deposisi asam, nilai pH tersebut relatif lebih tinggi dibandingkan dengan periode sebelumnya. Potensi penyebab keasaman air hujan dapat dilihat melalui ion NO3- dan nss SO42-, sementara senyawa penetralisasinya adalah NH4+ dan nss Ca2+. Fraksi ekuivalen nitrat menunjukkan bahwa HNO3 yang lebih berpengaruh dalam terjadinya deposisi asam di Jakarta, Serpong, dan Bandung, tetapi di Kototabang dan Maros lebih disebabkan oleh H2SO4. Fraksi ekuivalen amonium di Kototabang menunjukkan bahwa peran CaCO3 lebih dominan dalam menetralisasi senyawa asam, sementara di kota-kota lainnya lebih didominasi oleh NH3. Kajian ini mengindikasikan bahwa dominasi sumber pencemaran berasal dari kegiatan antropogenik.


Keywords


Deposisi basah, Ion Chromatography

References


Aikawa, M., Hiraki, T., Mukai, H., & Murano, K. (2008). Characteristic variation of concentration and chemical form in sulfur, nitrate, ammonium, and chloride species observed at urban and rural sites of Japan. Water, Air, Soil Pollut., 190(1), 287-297. doi:10.1007/s11270-007-9600-0

Aldrian, E., & Susanto, D. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int J of Climatol., 23(12), 1435-1452.

Anil, I., Alagha, O., & Karaca, F. (2017). Effects of transport patterns on chemical composition of sequential rain samples: trajectory clustering and principal component analysis approach. Air Quality, Atmosphere & Health, 10(10), 1193-1206.

APIS. (2016). Sulphur dioxide : emission and trends. Retrieved from http://www.apis.ac.uk/overview/pollutants/overview_SO2.htm

Balasubramanian, R., Victor, T., & Chun, N. (2001). Chemical and statistical analysis of precipitation in Singapore. Water, Air, and Soil Pollution, 130(1), 451-456.

BMKG. (2017). Normal hujan bulanan. Retrieved from https://bmkgsampali.net/normal-hujan-bulanan/

Burns, D. A., Aherne, J., Gay, D. A., & Lehmann, C. M. (2016). Acid rain and its environmental effects: Recent scientific advances. Atmos. Environ., 146, 1-4.

Ceron, R. M., Ceron, J. G., Carballo, C. G., Aguilar, C. A., Montalvo, C., Benitez, J. A., . . . Gomez, M. M. (2013). Chemical composition, fluxes and seasonal variation of acid deposition in Carmen Island, Campeche, Mexico. J. Environ. Prot., 50-56. doi:10.4236/jep.2013.48A1007

Chao, G., Zi-Fa, W., & Gbaguidi, E. A. (2010). Ammonium variational trends and the ammonia neutralization effect on acid rain over East Asia. Atmospheric and Oceanic Science Letters, 3(2), 120-126.

Chate, D., & Devara, P. (2009). Acidity of raindrop by uptake of gases and aerosol pollutants. Atmospheric Environment, 43(8), 1571-1577.

Chen, H.-Y., Hsu, L.-F., Huang, S.-Z., & Zheng, L. (2020). Assessment of the Components and Sources of Acid Deposition in Northeast Asia: A Case Study of the Coastal and Metropolitan Cities in Northern Taiwan. Atmosphere, 11(9), 983.

Chon, K., Kim, Y., Bae, D., & Cho, J. (2015). Confirming anthropogenic influences on the major organic and inorganic constituents of rainwater in an urban area. Drinking Water Engineering and Science, 8(2), 35-48.

Cui, L., Liang, J., Fu, H., & Zhang, L. (2020). The contributions of socioeconomic and natural factors to the acid deposition over China. Chemosphere, 253, 126491.

Dasgupta, P. K., & Maleki, F. (2019). Ion exchange membranes in ion chromatography and related applications. Talanta, 204, 89-137.

Duan, L., Yu, Q., Zhang, Q., Wang, Z., Pan, Y., Larssen, T., . . . Mulder, J. (2016). Acid deposition in Asia: emissions, deposition, and ecosystem effects. Atmos. Environ., 146, 55-69. doi:https://doi.org/10.1016/j.atmosenv.2016.07.018

EANET. (2010). Technical manual on wet deposition. Niigata: EANET.

EANET. (2015a). Data Report of Acid Deposition in East Asia 2014. Retrieved from Niigata:

EANET. (2015b). Strategy paper on future direction of monitoring for dry deposition of the EANET (2016-2020). Retrieved from Niigata:

EANET. (2016). Third periodic report on the state of acid deposition in East Asia Part II- National assesment. Niigata: EANET.

Grennfelt, P., Engleryd, A., Forsius, M., Hov, Ø., Rodhe, H., & Cowling, E. (2020). Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio, 49(4), 849-864.

Itahashi, S., Ge, B., Sato, K., Fu, J. S., Wang, X., Yamaji, K., . . . Liao, H. (2020). MICS-Asia III: overview of model intercomparison and evaluation of acid deposition over Asia. Atmospheric Chemistry and Physics, 20(5), 2667-2693.

Lara, L., Artaxo, P., Martinelli, L., Victoria, R., Camargo, P., Krusche, A., . . . Ballester, M. (2001). Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeast Brazil. Atmospheric environment, 35(29), 4937-4945.

Lestari, R. P., Nasution, R. I., Budiwati, T., Rachmawati, E., & Indrawati, A. (2018). Status deposisi basah di beberapa wilayah pemantauan di Indonesia periode 2008-2015. Ecolab, 12(2), 71-82.

Likens, G. E. (2020). Atmospheric acid deposition. Atmosphere and Climate, 45.

Liu, M., Huang, X., Song, Y., Tang, J., Cao, J., Zhang, X., . . . Zhu, T. (2019). Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proceedings of the National Academy of Sciences, 116(16), 7760. doi:10.1073/pnas.1814880116

Maas, R., Grennfelt, P., Amann, M., Harnett, B., Kerr, J., Berton, E., . . . Reis, S. (2016). Towards Cleaner Air. Scientific Assessment Report 2016.

Martins, E. H., Nogarotto, D. C., Mortatti, J., & Pozza, S. A. (2019). Chemical composition of rainwater in an urban area of the southeast of Brazil. Atmospheric Pollution Research, 10(2), 520-530.

Michalski, R. (2016). Application of IC-MS and IC-ICP-MS in environmental research: Wiley Online Library.

Monteith, D., Henrys, P., Banin, L., Smith, R., Morecroft, M., Scott, T., . . . Bowmaker, V. (2016). Trends and variability in weather and atmospheric deposition at UK Environmental Change Network sites (1993–2012). Ecological indicators, 68, 21-35.

Mukhtar, R., Lestari, R., Hindratmo, B., Nelson, R., Nugraha, M., & Suharguniyawan. (2019). Characterizing Acid Deposition’s Pollutant Sources in Serpong and Jakarta using Positive Matrix Factorization Model. Paper presented at the INAFOR, Bogor.

Nesterenko, P. N., & Paull, B. (2017). Ion chromatography Liquid Chromatography (pp. 205-244): Elsevier.

Prasetyo, B., Irwand, H., & Pusparini, N. (2018). Karakteristik curah hujan berdasarkan ragam topografi di Sumatera Utara Jurnal Sains & Teknologi Modifikasi Cuaca, 19(1), 11-20.

Pye, H. O., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., . . . Herrmann, H. (2020). The acidity of atmospheric particles and clouds. Atmospheric chemistry and physics, 20(8), 4809-4888.

Sase, H. (2017). Acid Deposition Air Pollution Impacts on Plants in East Asia (pp. 43-53): Springer.

Szép, R., Mateescu, E., Niță, I.-A., Birsan, M.-V., Bodor, Z., & Keresztesi, Á. (2018). Effects of the Eastern Carpathians on atmospheric circulations and precipitation chemistry from 2006 to 2016 at four monitoring stations (Eastern Carpathians, Romania). Atmospheric Research, 214, 311-328.

Thepanondh, S. (2004). A study of wet and dry deposition processes for regional air pollution and atmospheric deposition modeling. (Ph.D), Monash University, Melbourne.

Turyanti, A., & Chaerunnisa, C. (2017). The Estimation of Rainwater Acidity Level based on the Ambient Air Pollutants Concentration (Case Study: DKI Jakarta). Agromet, 31(2), 71-79.

Xiao, J. (2016). Chemical composition and source identification of rainwater constituents at an urban site in Xi’an. Environmental earth sciences, 75(3), 209.

Yim, S. H. L., Gu, Y., Shapiro, M. A., & Stephens, B. (2019). Air quality and acid deposition impacts of local emissions and transboundary air pollution in Japan and South Korea. Atmospheric Chemistry and Physics, 19(20), 13309-13323.

Yu, H., He, N., Wang, Q., Zhu, J., Gao, Y., Zhang, Y., . . . Yu, G. (2017). Development of atmospheric acid deposition in China from the 1990s to the 2010s. Environ. Pollut., 231, 182-190.




DOI: https://doi.org/10.20886/jklh.2021.15.2.89-100

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ecolab

This Journal Index by:

  

 

 

  

e-ISSN: 2502-8812, p-ISSN: 1978-5860
Ecolab is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License