Kajian Sifat Mekanik Serat Alam Limbah Tumbuhan sebagai Bahan Baku Bio-Komposit

Vandri Ahmad Isnaini, Rahmi Putri Wirman, Indrawata Wardhana, Try Susanti, Shabri Putra Wirman

Abstract


Serat alam adalah bahan baku yang banyak terdapat di alam dan merupakan bahan yang ramah lingkungan. Pemanfaatan limbah perkebunan atau hutan sebagai sumber serat alam juga ikut berkontribusi sebagai solusi masalah lingkungan. Penelitian ini dirancang untuk melakukan eksplorasi dan pengukuran sifat mekanik beberapa jenis serat alam yang terdapat di wilayah Provinsi Jambi. Sifat mekanik dari sampel serat alam diuji dengan alat universal testing machine yaitu penentuan nilai kuat tarik bahan (tensile test). Pengujian kuat tarik dilakukan dengan metode serat tunggal dengan panjang pengukuran 3 cm. Sebelum diuji, diameter sampel diukur sebagai variabel penentu luas sampel dengan menggunakan analisis gambar digital dari mikroskop dengan aplikasi ImageJ. Sedangkan tensile test digunakan untuk mencari nilai kekuatan maksimum dari serat alam. Dari hasil eksperimen, ukuran dari serat alam berkisar dari 0.0131 cm dengan ukuran terkecil dan nilai 0.0896 cm ukuran yang terbesar. Serat alam yang memiliki kekuatan tertinggi adalah serat dari daun nipah (Nypa fruticans), yaitu sebesar 13.54 Kg/cm2. Pola pengukuran nilai kuat tarik terhadap perubahan waktu menunjukkan bahwa serat alam merupakan serat berjenis elastis.

 

Keywords


Bio-komposit; kuat tarik; serat alam; sifat mekanis

References


Bhattacharyya, D., Subasinghe, A., & Kim, N. K. (2015). Natural fibers: Their composites and flammability characterizations. Multifunctionality of Polymer Composites. Elsevier Inc. https://doi.org/10.1016/B978-0-323-26434-1.00004-0.

BPS. (2021). No Title. Retrieved November 6, 2021, from https://www.bps.go.id/indicator/54/131/1/luas-tanaman-perkebunan-menurut-provinsi.html

Chandramohan, D., & Presin Kumar, A. J. (2017). Experimental data on the properties of natural fiber particle reinforced polymer composite material. Data in Brief, 13, 460–468. https://doi.org/10.1016/j.dib.2017.06.020

Deepak, K., Vattikuti, S. V. P., & Venkatesh, B. (2015). Experimental investigation of jute fiberreinforced nano clay composite. Procedia Materials Science, 10(Cnt 2014), 238–242. https://doi.org/10.1016/j.mspro.2015.06.046.

Ferreira, F., Pinheiro, I., de Souza, S., Mei, L., & Lona, L. (2019). Polymer Composites Reinforced with Natural Fibers and Nanocellulose in the Automotive Industry: A Short Review. Journal of Composites Science, 3(2), 51. https://doi.org/10.3390/jcs3020051.

Guin, W., Wang, J., Zhang, X., & Smith, J. (2014). Carbon nanotube-reinforced hybrid composites enabled by the PopTube Approach. Proceedings of the American Society for Composites - 29th Technical Conference, ASC 2014; 16th US-Japan Conference on Composite Materials; ASTM-D30 Meeting, (February 2015).

Gunti, R., Prasad, R., & Gupta. (2018). Mechanical and degradation properties of natural fiber reinforced pla composites: Jute, sisal, and elephant grass. Polimer Composites, 39(4), 1125–1136. https://doi.org/https://doi.org/10.1002/pc.24041.

Hossain, M. R., Islam, M. A., Van Vuure, A., & Verpoest, I. (2014). Quantitative analysis of hollow lumen in jute. Procedia Engineering, 90, 52–57. https://doi.org/10.1016/j.proeng.2014.11.813.

Jambi, B. (2021). No Title. Retrieved November 6, 2021, from https://jambi.bps.go.id/subject/53/tanaman-pangan.html#subjekViewTab4.

Jaramillo, N., Hoyos, D., & Santa, J. F. (2016). Composites with pineapple-leaf fibers manufactured by layered compression molding. Ingeniería y Competitividad, 18(2), 151–162.

Kuhn, Howard; Medlin, D. (2000). ASM hand book, mechanical testing and evaluation (Vol. 8). ASM International.

Li, Y., Feng, X., Liu, Y., & Han, X. (2021). Apple quality identification and classification by image processing based on convolutional neural networks. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-96103-2.

Milosevic, M., Stoof, D., & Pickering, K. L. (2017). Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites. Journal of Composites Science, 1(1). https://doi.org/10.3390/jcs1010007.

Narahari, P., & Deepak, K. (2021). Analysis and identification of aeroplane images using transform based methods. Turkish Journal of Computer and Mathematics Education, 12(13), 343–352.

Nikaeen, G., Yousefinejad, S., Rahmdel, S., Samari, F., & Mahdavinia, S. (2020). Central composite design for optimizing the biosynthesis of silver nanoparticles using plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-020-66357-3.

Peças, P., Carvalho, H., Salman, H., & Leite, M. (2018). Natural Fibre Composites and Their Applications: A Review. Journal of Composites Science, 2(4), 66. https://doi.org/10.3390/jcs2040066.

Saba, N., Tahir, P. M., & Jawaid, M. (2014). A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers, 6(8), 2247–2273. https://doi.org/10.3390/polym6082247.

Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of Natural Fibers and Its Composites: An Overview. Natural Resources, 07(03), 108–114. https://doi.org/10.4236/nr.2016.73011.

Sosilowati, D. (2017). Sinkronisasi Program dan Pembiayaan Jangka Pendek 2018 - 2020 Keterpaduan Pengembangan Kawasan dengan Infrastrukrur PUPR Pulau Sumatera. Retrieved from https://bpiw.pu.go.id/uploads/publication/attachment/Buku_1Sumatera.pdf.




DOI: https://doi.org/10.20886/jklh.2022.16.2.117-127

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ecolab

This Journal Index by:

  

 

 

  

e-ISSN: 2502-8812, p-ISSN: 1978-5860
Ecolab is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License