EMISI GAS RUMAH KACA DAN HASIL GABAH DARI BEBERAPA VARIETAS PADI UNGGUL TIPE BARU DI LAHAN SAWAH TADAH HUJAN DI JAWA TENGAH

A. Wihardjaka, Sarwoto Sarwoto

Abstract


Pelepasan varietas unggul tipe baru sebagai jawaban akan peningkatan kebutuhan pangan nasional. Beberapa varietas padi telah rentan terhadap serangan organisme pengganggu tanaman, sehingga potensial menurunkan hasil gabah. Di sisi lain, budidaya padi sawah berkontribusi terhadap pelepasan gas rumah kaca terutama metana ke atmosfer yang dapat menyebabkan pemanasan global. Informasi emisi metana dari beberapa varietas inhibrida masih terbatas. Penelitian dilaksanakan dengan tujuan untuk mengetahui besarnya emisi metana dari beberapa varietas inhibrida yang dibudidayakan di lahan sawah tadah hujan. Percobaan disusun menggunakan rancangan acak kelompok dengan tiga ulangan dan perlakuan varietas padi yang meliputi Inpari 14, Inpari 15, Inpari 17, Inpari 18, Inpari 20, Ciherang, Situ Bagendit, IR64. Inpari 17 dan 18 merupakan kultivar padi yang menghasilkan emisi metana lebih rendah daripada IR64, Ciherang, dan Situ Bagendit. Emisi metana terendah dari kultivar yang diuji adalah Inpari 18 < Inpari 17 < IR64 < Situ Bagendit < Ciherang < Inpari 20 < Inpari 14 < Inpari 15. Hasil gabah kering giling tertinggi dari kultivar yang diuji di lahan sawah tadah hujan adalah Inpari 17 < Inpari 18 < Situ Bagendit < Inpari 15 < Inpari 20 < Inpari 14 < IR64 < Ciherang. Inpari 17 dan 18 merupakan kultivar padi yang berdaya hasil tinggi dan rendah emisi metana dengan indeks emisi metana masing-masing 0,01 kg CH4 kg-1 gabah.

Keywords


emisi metana, varietas inbrida, sawah tadah hujan, gabah, jawa tengah

Full Text:

PDF

References


(1) Neue, H.U. 1993. Methane emission from rice fields : Wetland rice fields may make a major contribution toglobal warming. Bioscience 43(7): 466-473.

(2) Dubey, S.K. 2005. Mi c robi al ecology of methane emission in rice agroecosystems : A review. Applied Ecology and Environmental Research 3(2): 1-27.

(3) Wassmann, R., G.C. Nelson, S.B.Peng, K. Sumfleth, S.V.K. Jagadish, Y. Hosen, & M.W. Rosegrant. 2010. Rice and global climate change. In: Pandey et al. editors. Rice in The Global Economy: Strategic Research and Policy Issues for Good Security. International Rice Research Institute. Los Banos, Philippines. p. 411-432.

(4) van Zwielen, L., B. Singh, S. Joseph, S. Kimber, A. Cowie, & K.Y. Chan. 2009. Biochar and emissions on non- CO greenhouse gases from soil. p. 227.

(5) Neue, H.U., & R.L. Sass. 1994. Trace gas emission from rice fields. Environ. Sci. Research 48: 119 – 147.

(6) Holzapfel-Pschron, A., R. Conrad, & W. Seiler. 1986. Effect of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92: 223 – 233.

(7) Nouchi, I. 1992. Mechanism of methane transport through rice plants. In Proceeding of CH4 and N2O Workshop : CH4 and N2O emissions from natural and antropogenic sources and their reduction research plant. National Research of Agro-Environmental Sciences. Tsukuba. Japan.

(8) Neue, H.U., & P.A. Roger. 1993. Rice Agriculture : Factors controlling emission. Pages XXX in M.A.K. Khalil, & M. Shearer (Eds.). Global Atmospheric Methane. NATO ASI/ ARW Series.

(9) Wihardjaka, A., & A.K. Makarim. 2001. Emisi gas metan melalui beberapa varietas padi pada tanah I n c e p t i so l ya ng d i sa wa hk a n . Penelitian Pertanian Tanaman Pangan 20(1): 10-16.

(10) Murphy, J.A., S.L. Murphy, & H. Samaranayake. 2006. Soil physical cobstraints and plant growth interaction. p. 387-406 in Wilkinson, R.E. (Ed.). Plant-Environment Interactions. 2nd Edition. Marcel Dekker, Inc. Madison Avenue, New York.

(11) Suprihatno, B., A.A. Daradjat, Satoto, Baehaki, S.E., Suprihanto, A. Setyono, S.D. Indrasari, P. Wardhana, & H. Sembiring. 2010. Deskripsi Varietas Padi. Balai Besar Penelitian Tanaman Padi. Subang.

(12) Iqbal, J., R. Hu, S. Lin, R. Hatano, M. Feng, L. Lu, B. Ahamadou, & L. Du. 2009. CO2 emission in a subtropical red paddy soil (Ultisols) as affected by straw and N-fertilizer applications : A case study in Southern China. Agriculture, Ecosystems and Environment 131: 292-302.

(13) Wassman, R., H. Papen, & H. Rennenberg. 1993. Methane emission from rice paddies and possible mitigation strategies. Chemosphere 26: 201-217

(14) Wassmann, R., H.U. Neue, J.K. Ladha,& M.S. Aulakh. 2004. Mitigating greenhouse gas emission from rice- wheat cropping systems in Asia. Environment, Development and Sustainability 6: 65-90.

(15) Wagatsuma, T., T. Nakashima, T. Tawaraya, S. Watanabe, A. Kamio, & A. Ueki. 1990. Role of plant aerenchyma in wet tolerance and methane emission from plants. p. 455-461 in M.L. van Beusichem (Ed.). Plant Nutrition, Plant Physiology and Application. Kluwer Acad. Publ.

(16) Shalini-Singh, S. Kumar, & M.C. Jain. 1997. Methane emission from two Indian soils planted with different rice cultivars. Biol. Fertil. Soils 25: 285-289.

(17) Subadiyasa, Netera, Nyoman Arya, & Makoto Kimina. 1997. Methane emissions from paddy field in Bali Island, Indonesia. Soil Sci. Plant Nutr. 43: 387-394.

(18) Abdullah, B., S. Tjokrowidjojo, & Sularjo. 2008. Status, perkembangan, dan prospek pembentukan padi tipe baru di Indonesia. Prosiding Simposium V Tanaman Pangan, Inovasi Teknologi Tanaman Pangan. B u k u 2 . Pu sa t Pe n e l i t i a n d a n Pengembangan Tanaman Pangan. Bogor. Hlm. 269-287




DOI: https://doi.org/10.20886/jklh.2015.9.1.9-16

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Jurnal Ecolab

This Journal Index by:

  

 

 

  

e-ISSN: 2502-8812, p-ISSN: 1978-5860
Ecolab is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License