PEMBUATAN ARANG KOMPOS BIOAKTIF (ARKOBA) DARI LIMBAH PENYULINGAN NILAM

(Manufacturing Bioactive Charcoal-Compost from Patchouli Distillation Wastes)

Oleh/By:
Ahmad Junaedi¹, Ahmad Rojidin² & Eko Sutrisno³

¹,²,³ Balai Penelitian Hutan Penghasil Serat, Jl. HR. Soebrantas, Kuok, Riau, Tlp: (0762) 21370

Diterima 24 September 2007; disetujui 11 Agustus 2008

ABSTRACT

Several orgadeq dosages have been examined in producing nilam bioactive charcoal compost and obtaining the best formula. The experiment was accomplished using a completely randomized design with three levels of orgadeq as the treatments. The orgadeq dosages consisted of 2.5 kg/100 kg (A1), 5 kg/100 kg (A2) and 7.5 kg/100 kg of patchouli leaf waste (A3), respectively. Composting duration of each dosages for 33 days showed that there were no different yields among the treatments applied. The nutrition content of each treatment product met the requirement of the compost quality standard. Treatment A1 with lowest orgadeq was considered the best composition with nutrition content of \(N = 2.17\%; P_2O_5 = 1.5\%; K_2O = 0.69\%; CaO = 0.84\% \) and \(C/N \) ratio = 9.4, respectively.

Keywords: Orgadeq, dosages, compost, nutrition content, patchouli

ABSTRAK

Uji coba beberapa dosis orgadeq pada pembuatan arang kompos bioaktif (arkoba) nilam dilakukan untuk memperoleh dosis orgadeq terbaik. Untuk proses pengomposan rancangan acak lengkap digunakan dalam penelitian ini dengan menguji tiga dosis orgadeq sebagai perlakuan dan diulang tiga kali. Adapun perlakuanya adalah A1 = dosis orgadeq 2,5 kg, A2 = 5 kg dan A3 = 7,5 kg masing-masing untuk 100 kg bobot ampas penyulingan daun nilam. Hasil penelitian menunjukkan bahwa tidak ada perbedaan lama waktu pengomposan akibat perbedaan dosis orgadeq. Pada semua perlakuan waktu pengomposan berlangsung selama 33 hari. Untuk keperluan efisiensi bahan bioaktivator, perlakuan A1 merupakan dosis yang terbaik dengan kandungan unsur hara : \(N = 2.17\%; P_2O_5 = 1.5\%; K_2O = 0.69\%; CaO = 0.84\% \) and \(C/N \) ratio = 9.4.

Kata kunci: Orgadeq, arkoa, dosis, nilam, kandungan hara
I. PENDAHULUAN

Sampai saat ini upaya diversifikasi hasil dari kegiatan industri kecil penyulingan daun nilam (PDN) masih dilakukan secara terbatas. Minyak nilam (patchouli oil) masih merupakan produk utama yang dihasilkan dari industri ini. Padahal, selain minyaknya dari PDN turut dihasilkan limbah penyulingan (ampas suling daun nilam) dengan volume yang sangat besar, tetapi belum banyak dimanfaatkan.

Teknologi pembuatan arkoba, diawali dengan penemuan teknologi pembuatan arang kompos oleh Puslitbang Hasil Hutan. Arang kompos adalah sejenis pupuk organik, berupa produk gabungan antara arang dan kompos yang dihasilkan melalui proses pengomposan (Gusmailina et al., 2006). Sedangkan kompos bioaktif adalah kompos yang diproduksi dengan bantuan mikroba lignoselulolitik unggul yang tetap bertahan di dalam kompos dan berperan sebagai agen hayati pengendali penyakit tanaman (Isroi, 2007). Dengan demikian maka arang kompos bioaktif (arkoba) merupakan arang kompos yang dihasilkan melalui proses pengomposan dengan memanfaatkan bio aktivator sebagai dekomposernya.

Salah satu bio aktivator yang dapat digunakan untuk membuat arkoba limbah PDN adalah orgade. Orgade merupakan bio aktivator yang mengandung mikroba dekomposer Trichoderma pseudoongingii, Cytopaga sp dan fungi pelapuk putih (Isroi, 2007).

Untuk menemukan teknik pembuatan arkoba limbah PDN yang efektif dan efisien salah satunya dapat dilakukan dengan melaksanakan uji coba beberapa dosis orgade pada pembuatan arkoba limbah PDN. Diharapkan dengan uji coba tersebut diperoleh dosis orgade (b/b) terbaik yang didasarkan kepada kriteria lamanya pengomposan dan kandungan unsur hara.

Tujuan penelitian ini adalah untuk mengetahui pengaruh dosis orgade terhadap lama proses pengomposan dan kandungan unsur hara arkoba limbah PDN.
II. METODOLOGI

A. Waktu dan Tempat Penelitian

B. Bahan dan Alat

Bahan dan alat yang digunakan dalam penelitian ini antara lain adalah: \textit{orgadev} sebagai bio aktor, ampas penyulingan daun nilam (ampas PDN), arang (limbah bahan bakar penyulingan), air, peralatan untuk mencampurkan bahan-bahan kompos, termometer, alat tulis dan alat-alat lainnya.

C. Rancangan Percobaan

Rancangan acak lengkap digunakan dalam penelitian ini dengan menguji tiga dosis \textit{orgadev} yang dipilih sebagai perlakuan, dan diulang sebanyak tiga kali. Adapun perlakuannya adalah:

- A1 = dosis \textit{orgadev} 2,5 kg/100 kg bobot ampas PDN (2,5\% dari bobot bahan);
- A2 = dosis \textit{orgadev} 5 kg/100 kg bobot ampas PDN (5\% dari bobot bahan) dan
- A3 = dosis \textit{orgadev} 7,5 kg/100 kg bobot ampas PDN (7,5\% dari bobot bahan).

D. Pembuatan Arang Kompos Bioaktif Limbah Penyulingan Daun Nilam (Arkoba Nilam)

Proses pembuatan arkoba nilam prinsipnya sama dengan pembuatan kompos biasa, namun dilengkapi dengan penambahan arang dan bio aktor (\textit{orgadev}). Adapun langkah pembuatannya adalah sebagai berikut:

1. Mencampur bahan kompos (ampas PDN) 100 kg, arang 10 kg, \textit{orgadev} beratnya disesuaikan dengan dosis perlakuan yang dicobakan (2,5 kg untuk A1; 5 kg untuk A2 dan 7,5 kg untuk A3) dan air sekitar 30 liter. Semua bahan dicampurkan sampai merata.

2. Campuran tersebut dimasukkan ke dalam bak/wadah pengomposan yang sudah tersedia. Bagian atas ditutup dengan plastik, pada bagian tengah dipasang termometer sampai ke dalam tengah tumpukan kompos.

3. Suhu diukur setiap hari untuk memonitor proses pengomposan apakah berjalan atau tidak. Jika kecenderungan suhu tetap atau menorun maka dilakukan pembalikan kompos dan jika menjadi kering ditambahkan air. Indikator kompos sudah matang yaitu jika suhu sudah menurun dan setelah dilakukan pembalikan tidak mengalami kenaikan suhu kembali serta secara visual bahan kompos telah mengalami perubahan warna menjadi lebih gelap dan berbau mirip tanah.

4. Setelah kompos benar-benar matang dan tidak lagi mengalami perubahan/fluktuasi suhu, kompos dibongkar dan diangin-anginkan minimal 3 hari sebelum siap untuk diaplikasikan.
E. Pengamatan dan Pengumpulan Data

Suhu CBAN diukur dengan termometer pada bagian tengah tumpukan campuran bahan. Pengamatan dilakukan tiga kali sehari yaitu pada pkl. 08.00, pkl. 13.00 dan pkl. 16.00. Pada masing-masing perlakuan dan waktu pengamatan, pengukuran suhu dilakukan tiga kali ulangan. Pengamatan dibagi ke dalam tiga periode pengamatan yaitu periode I (1 hari pengomposan/HP sampai dengan 12 HP), periode II (13 HP sampai dengan 25 HP) dan periode III (26 HP sampai dengan 35 HP). Pembagian ini didasarkan oleh aktivitas dekomposisi oleh mikroorganisme (Djurnani et al., 2005). Pengamatan dihentikan sampai suhu CBAN konstan yang mengindikasikan bahwa pembuatan arkoba nilam sudah selesai (sekitar satu bulan).

Selanjutnya pada tiap perlakuan diambil sample arkoba nilam untuk dianalisis kandungan unsur haranya di laboratorium tanah Balai Pengkajian Teknologi Pertanian (BPTPT) Riau. Parameter yang dianalisa adalah sifat kimia arkoba dengan variabel-variabelnya: kandungan C dan N total yang dianalisa dengan metode Kjeldahl, kandungan P₂O₅, K₂O dan CaO yang dianalisa dengan metode penjenuhan Amonium acetat pH 7. Sample yang diambil pada tiap perlakuan merupakan sample campuran (komposit) dari tiga ulangan perlakuan sehingga terdapat tiga sample yang dianalisis.

Analisa laboratorium dilakukan juga terhadap sifat kimia bahan arkoba (limbah PDN) yang dilakukan sebelum pengomposan. Adapun sifat kimia yang dianalisa adalah: kandungan C dan N total dianalisa dengan metode Kjeldahl, K₂O dan CaO yang dianalisa dengan metode penjenuhan Amonium acetat pH 7.

F. Analisa Data

Analisa statistik dengan uji ANOVA dilakukan untuk mengetahui pengaruh perbedaan perlakuan terhadap perbedaan suhu selama pengomposan. Sementara analisa deskriptif dilakukan untuk mengetahui pengaruh perlakuan terhadap kandungan unsur hara ALPN.

III. HASIL DAN PEMBAHASAN

A. Suhu Selama Pengomposan

Hasil penelitian menunjukkan bahwa pada periode I (1 hari pengomposan/HP sampai dengan 12 HP) laju pengomposan berlangsung cepat yang ditunjukkan oleh laju peningkatan

Gambar (Figure) 1. Suhu (°C) selama pengomposan pada masing-masing perlakuan dosis orgadec (Temperatures of composting at several orgadec dosages level)

Djuarnani et al. (2005) menyatakan bahwa pada kisaran suhu 35 - 55°C mikroorganisme sudah mampu untuk mendekomposisi bahan kompos. Walaupun idealnya dekomposisi akan berlangsung sempurna jika mencapai kisaran suhu 55 - 60°C (Gusmailina et al., 2006). Pada kisaran suhu tersebut, mikroorganisme dekomposer tumbuh tiga kali, enzim akan bekerja lebih efektif dan penurunan C/N akan berlangsung sempurna.

Pada penelitian ini kisaran suhu tersebut tidak dapat dicapai. Suhu tertinggi yang dapat dicapai pada masing-masing perlakuan adalah 39,0°C untuk A1, 40,8°C untuk A2 dan 35,7°C untuk A3. Tidak tercapainya suhu tertinggi pada kisaran 55 - 60°C disebabkan oleh beberapa faktor antara lain adalah: kurang tingginya tumpukan campuran bahan arkoba (<1m), jenis bahan arkoba yang digunakan dan pengaruh tingginya curah hujan selama pengomposan. Pada tumpukan bahan yang terlalu rendah (<1m) bahan kompos akan cepat kehilangan panas sehingga suhu yang tinggi tidak tercapai (Djuarnani et al., 2005).
Tabel 1. Suhu selama pengomposan (°C) pada tiap perlakuan untuk tiap periode pengamatan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Suhu pengomposan (Composting temperature) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Periode I (1st period)</td>
</tr>
<tr>
<td>A1</td>
<td>(31.7 ± 2.4)a</td>
</tr>
<tr>
<td>A2</td>
<td>(31.8 ± 2.2)a</td>
</tr>
<tr>
<td>A3</td>
<td>(31.3 ± 1.9)a</td>
</tr>
<tr>
<td>Rataan</td>
<td>(31.6 ± 0.3)</td>
</tr>
<tr>
<td></td>
<td>Periode II (2nd period)</td>
</tr>
<tr>
<td>A1</td>
<td>(35.7 ± 1.9)b</td>
</tr>
<tr>
<td>A2</td>
<td>(35.7 ± 2.2)b</td>
</tr>
<tr>
<td>A3</td>
<td>(33.4 ± 0.3)b</td>
</tr>
<tr>
<td>Rataan</td>
<td>(34.9 ± 1.3)</td>
</tr>
<tr>
<td></td>
<td>Periode III (3rd period)</td>
</tr>
<tr>
<td>A1</td>
<td>(33.5 ± 1.5)c</td>
</tr>
<tr>
<td>A2</td>
<td>(33.3 ± 1.2)c</td>
</tr>
<tr>
<td>A3</td>
<td>(31.8 ± 0.6)c</td>
</tr>
<tr>
<td>Rataan</td>
<td>(32.9 ± 0.9)</td>
</tr>
</tbody>
</table>

Keterangan (Remarks): Angka yang diikuti huruf yang sama dalam satu kolom tidak berbeda nyata berdasarkan uji ANOVA taraf 5% (The numbers was followed by the same letters are not significantly different at 5% level with ANOVA test); A1 = dosis orgade 2.5 kg/100 kg ampas penyulingan (orgade dosage 2.5 kg/100 kg of distilled waste); A2 = dosis orgade 5 kg/100 kg ampas penyulingan (orgade dosage 5 kg/100 kg of distilled waste); A3 = dosis orgade 7.5 kg/100 kg ampas penyulingan (orgade dosage 7.5 kg/100 kg of nilam distilled waste)

Berdasarkan analisis statistik dengan uji ANOVA tidak ada perbedaan yang nyata (p<0.05) perubahan suhu selama proses pengomposan (seluruh periode pengamatan) akibat perbedaan dosis orgade (Tabel 1). Kondisi ini menunjukkan bahwa berdasarkan indikator suhu pengomposan laju pengomposan pada perlakuan A1, A2 dan A3 berlangsung relatif sama yaitu selama 33 hari.

B. Kandungan Unsur Hara

Hasil analisa unsur hara yang dikandung oleh arkoba nilam pada tiap perlakuan orgade dapat dilihat pada Tabel 2. Pada Tabel 2 nampak tidak terdapat pola yang konsisten untuk kandungan unsur hara akibat perbedaan dosis orgade. Pada dosis orgade yang dicobakan, peningkatan dosis cenderung tidak diikuti oleh peningkatan kandungan unsur hara arkoba. Dengan hasil tersebut berdasarkan indikator kandungan unsur hara maka kualitas arkoba pada tiap perlakuan relatif sama. Dengan demikian karena tidak ada perbedaan kandungan unsur hara maka dari segi efisiensi bahan aktivator, dosis orgade A1 merupakan dosis terbaik untuk diaplikasikan.

Dibandingkan kompos limbah nilam yang dibuat dengan campuran Em4 (1%), pupuk kandang dan kapur yang dilaporkan Djaizuli & Trisilawati (2004) secara umum, kandungan unsur hara arkoba nilam memiliki kandungan unsur hara yang lebih rendah. Hal ini berarti dari segi kandungan hara, kualitas kompos limbah PDN tersebut cenderung lebih baik daripada arkoba nilam. Hal tersebut dimungkinkan karena adanya tambahan unsur hara dari pupuk kandang dan kapur. Adanya fraksi kapur terutama menambah tingginya kandungan CaO (1,7 %) dan K2O (1,26 %), sedangkan pupuk kandang menambahkannya kandungan karbon dan nitrogen. Dari hasil perbandingan tersebut maka untuk lebih meningkatkan kandungan unsur hara dapat direkomendasikan penambahan kapur pada pembuatan arkoba nilam.
Tabel 2. Kandungan unsur hara pada arkoba nilam, kompos limbah penyulingan daun nilam dan arang kompos sebuk gergaji

Table 2. The Nutrition Content of nilam bioactive charcoal compost, nilam leaves distilled waste compost and charcoal compost of wood wastage

| Kandungan hara (Nutrition content) | Arkoba nilam (nilam bio active charcoal compost) | Kompos nilam (nilam distilled waste compost) | AKSG
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
</tr>
<tr>
<td>pH (H₂O)</td>
<td>8,70</td>
<td>8,90</td>
<td>8,70</td>
</tr>
<tr>
<td>C (%)</td>
<td>20,4</td>
<td>20,20</td>
<td>22,32</td>
</tr>
<tr>
<td>N (%)</td>
<td>2,17</td>
<td>2,17</td>
<td>2,09</td>
</tr>
<tr>
<td>C/N</td>
<td>9,40</td>
<td>9,31</td>
<td>10,68</td>
</tr>
<tr>
<td>P₂O₅ (%)</td>
<td>1,50</td>
<td>1,52</td>
<td>1,34</td>
</tr>
<tr>
<td>K₂O (%)</td>
<td>0,69</td>
<td>0,74</td>
<td>0,77</td>
</tr>
<tr>
<td>CaO (%)</td>
<td>0,84</td>
<td>0,13</td>
<td>0,85</td>
</tr>
</tbody>
</table>

Keterangan (Remarks): A1 = dosis orgade 2,5 kg/100 kg amas penyulingan (orgade dosage 2,5 kg/100 kg of distilled wastage); A2 = dosis orgade 5 kg/100 kg amas penyulingan (orgade dosage 5 kg/100 kg of distilled wastage); A3 = dosis orgade 7,5 kg/100 kg amas penyulingan (orgade dosage 7,5 kg/100 kg of distilled wastage); * = Djazuli & Trisila Wati (2004); + = campuran limbah penyulingan + EM4 (1%) + pupuk kandang + kapur (mixture of distilled wastage + 1% EM4 + poultry wastage + farming lime); AKSG = arang kompos serbuk gergaji (charcoal compost of wood wastage); b = sumber/refer to Gusmailina et al. (2000) dalam/in Gusmailina et al. (2003)

Sementara itu, dibandingkan dengan kandungan unsur hara arang kompos serbuk gergaji (AKSG) yang dilaporkan oleh Gusmailina et al. (2000) dalam Gusmailina et al. (2003), beberapa unsur hara pada arkoba nilam lebih tinggi dibandingkan arang kompos tersebut. Namun, kandungan N (%), P₂O₅ (%), dan K₂O (%) pada arkoba nilam lebih tinggi dibandingkan AKSG. Perbedaan kandungan hara kompos tersebut disebabkan adanya perbedaan jenis dan kualitas bahan yang digunakan (Gusmailina et al. 2003). Hasil analisa laboratorium menunjukkan bahwa kandungan N (%) dan K₂O (%) limbah penyulingan nilam lebih tinggi dibandingkan arang serbuk gergaji (Tabel 3).
Tabel 3. Sifat kimia limbah penyulingan nilam dan arang serbuk gergaji
Table 3. Chemical characteristics of Nilam distilled waste and charcoal of wood waste

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter (Parameters)</th>
<th>Kandungan (Content)</th>
<th>Limbah penyulingan (Distilled waste)</th>
<th>Arang serbuk gergaji (Charcoal of wood waste)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pH</td>
<td></td>
<td>8,71</td>
<td>10,2</td>
</tr>
<tr>
<td>2</td>
<td>C (%)</td>
<td></td>
<td>25,67</td>
<td>74,16</td>
</tr>
<tr>
<td>3</td>
<td>N (%)</td>
<td></td>
<td>1,96</td>
<td>0,54</td>
</tr>
<tr>
<td>4</td>
<td>K₂O (%)</td>
<td></td>
<td>0,91</td>
<td>0,08</td>
</tr>
<tr>
<td>5</td>
<td>CaO (%)</td>
<td></td>
<td>1,35</td>
<td>0,15</td>
</tr>
</tbody>
</table>

Keterangan (Remarks): ¹ = sumber/refer to Gusmailina et al. (2003)

Kandungan unsur hara makro yang dikandung kompos dapat digunakan untuk menilai kualitas kompos. Hakim (2007) menyatakan bahwa kompos yang baik mengandung unsur hara makro nitrogen > 1,5 %, P₂O₅ > 1%, dan K₂O > 1,5 %. Sementara itu, Anonim (2007) mengeluarkan standar minimal kandungan unsur hara yang dikandung kompos, diantaranya adalah N ≥ 2,12 %, P ≥ 1,3 %, dan C/N ≤ 20. Hasil penelitian menunjukkan bahwa pada semua dosis orgadec yang dicobakan kandungan unsur hara arkoba nilam pada umumnya memenuhi standar tersebut kecuali kandungan K₂O yang lebih rendah dari 1,5%. Dengan hasil ini untuk efisiensi maka dosis orgadec paling rendah (2,5% dari bobot bahan) disarankan untuk diaplikasikan pada pembuatan arang kompos bioaktif (arkoba) dari limbah penyulingan nilam.

IV. KESIMPULAN DAN SARAN

1. Berdasarkan perubahan suhu selama pengomposan, tidak ada perbedaan lamanya waktu pengomposan akibat perbedaan dosis orgadec. Pada semua dosis orgadec yang dicobakan (2,5 - 7,5 kg orgadec/100 kg bobot ampas penyulingan daun nilam) pengomposan berlangsung selama 33 hari.

3. Untuk lebih meningkatkan kandungan unsur hara, penambahan pupuk kandang dan kapur bisa dilakukan pada pembuatan arkoba limbah penyulingan daun nilam.
DAFTAR PUSTAKA

