Jurnal Penelitian Hasil Hutan
Forest Products Research Journal

PENGARUH SUDUT KERAT DAN BAGIAN BATANG TERHADAP SIFAT
PENGGERGAIJAN KAYU KELAPA (Cocos nucifera. L.)
The Influence of Hook Angle and Trunk Portion on Sawing Properties
of Coco Wood (Cocos nucifera. L.)

Oleh/By
Osly Rachman

Summary
Eighteen green cocowood samples, 3 m in length each were sawn into 3 cm thick boards. Trunk samples consisted
of two groups, butt logs and top logs. Each group was sawn with 3 degrees of hook angle, namely 19, 22 and 25 degrees.
Sawing properties, i.e., power consumption, sawing productivity and lumber recovery were related with hook angle and
trunk portion.

The results reveal that trunk portion and hook angle had a significant effect on power consumption. The butt logs
consumed power higher than top logs.

Trunk portion had no effect on sawing productivity but greater hook angle tends to increase the productivity.
Hook angle and trunk portion had no effect on recovery.

I. PENDAHULUAN

Luas pertanaman kelapa di Indonesia menduduki tempat ke dua di dunia setelah negara pertama
Pilipina. Di Indonesia dewasa ini tercatat 229 juta
batang kelapa terdiri dari 39 juta batang berumur
lebih dari 60 tahun dan sudah tidak produktif lagi
sedangkan sisanya berumur kurang dari 60 tahun
(Anon., 1983). Menurut Mc Quire (1979), rata-
rata volume satu batang kelapa adalah 1 m³ dan
tiap hektar mengandung sekitar 100 batang kelapa.
Dengan demikian potensi kayu kelapa saat ini
adalah lebih kurang 39 juta m³. Apabila peremaja-
an dilaksanakan seluas 35.000 ha per tahun maka
volume kayu kelapa akan tersedia sebanyak 3,5
juta m³ tiap tahun.

Hasil-hasil penelitian telah membuktikan bahwa
kayu kelapa selain dapat dimanfaatkan sebagai
rangka rumah atau bahan bangunan lainnya ter-
nyata dapat pula digunakan untuk bahan non struk-
tural seperti perabot rumah tangga, bahan kerajinan
tangan atau bahan ukiran. Dalam usaha memanfaat-
kannya menjadi barang-barang tersebut di atas,
batang kelapa terlebih dahulu harus digergaji men-
jadi kayu gergaji dalam dimensi tertentu sesuai
 dengan keperluan.

Menurut Madrazo (1983), kesukaran menggergaji
kayu kelapa terutama disebabkan struktur anatomii-
nya yang khas dan perbedaan kekerasan yang
cukup tinggi dalam satu batang kelapa. Perbedaan
kekerasan ini disebabkan oleh adanya distribusi
kerapatan (density) pada satu batang. Mc Quire
(1979) menunjukkan bahwa kerapatan pada bagian
pangkal adalah 400 – 600 kg/m³ dan bagian ujung
sebesar 100 – 300 kg/m³. Oleh karena adanya
struktur anotomi yang khas maka untuk men-
gergajinya diperlukan bilah gergaji dengan perlaku-
an stellite tip dan giwara pencet (Rachman dan
Karnasudirja, 1984).

Sudut kerat memegang peranan penting dalam
mekanisme menggergaji. Sudut ini dibentuk oleh
perpotongan garis tegak lurus melalui pucuk gigi
dan garis yang melalui dada gigi (Gambar 1).

\[A = \text{sudut kerat (hook angle)} \]
\[B = \text{sudut ketajaman (sharpeness angle)} \]
\[C = \text{sudut bebas (clearance angle)} \]

Keterangan :

Gambar 1. Profil gigi gergaji

Figure 1. Profile of saw tooth

Berdasarkan uraian di atas maka penelitian bertujuan untuk mempelajari pengaruh bagian batang (dolok pangkal dan ujung) dan sudut kerat terhadap sifat penggergajian kayu kelapa. Sifat-sifat penggergajian yang dimaksud adalah rendemen, produktivitas penggergajian dan konsumsi tenaga.

II. BAHAN DAN METODE

A. Bahan Penelitian

Dalam penelitian ini telah digunakan sebanyak 18 dolok kelau kelapa dengan panjang masing-masing 3 meter. Dolok tersebut seluruhnya dalam keadaan basah atau sekitar satu minggu setelah penebangan.

Peralatan untuk melaksanakan penelitian terdiri dari mesin-mesin penggergajian dengan 3 macam bilah gergaji dan alat-alat tera. Mesin-mesin penggergajian yang digunakan yaitu gergaji utama berukuran 44 in. dengan carriage otomatis, gergaji pembantu ban 38 in. dan gergaji bundar pemotong 18 in. Alat-alat teradi dari meteran, dial caliper, stop wahct, Ampere meter, oven dan timbangan.

B. Metode Penelitian

Semua dolok contoh yang telah diukur diameter dan kadar airnya kemudian dikelompokkan menjadi dua bagian sama banyak, yaitu
1. Dolok bagian pangkal sebanyak 9 dolok
2. Dolok bagian ujung sebanyak 9 dolok

Tiap kelompok dolok digergaji dengan bilah gergaji yang mempunyai 3 macam sudut kerat, yaitu 19 derajat, 22 derajat dan 25 derajat. Masing-masing sudut kerat diberi kode 19, 22 dan 25. Mata gergaji dipertahankan selalu dalam keadaan tajam dengan cara mengasahnya bila mulai tumpul. Ulangan untuk tiap perlakuan 3 kali. Cara menggergaji mengikuti pola menggergaji satu sisi terus menerus (through and through) dengan tujuan menghasilkan papan setebal 3 cm.

Respons yang diamati meliputi konsumsi tenaga, produktivitas menggergaji dan rendemen penggergajian. Konsumsi tenaga diamati pada saat dolok digergaji pada unit gergaji utama dengan nilai KwH/ m2. Nilai ini diperoleh melalui rumus:

$$KVA = \sqrt{3 \times 220 \times I}$$

$$\text{KWH/m}^2 = KVA \times \frac{I}{m2}$$

dimana,
- I = nilai pengamatan Ampere meter
- t = waktu pengamatan (menit)
- m2 = luas permukaan yang digergaji

Produktivitas menggergaji diukur dengan satuan m2/menit dan diamati segera setelah tiap dolok digergaji di unit gergaji utama.

Pola dan analisis percobaan yang digunakan adalah eksperiment tersaran dengan pola acak lengkap.

III. HASIL DAN PEMBAHASAN

A. Sifat-sifat kayu kelapa

Hasil pengamatan diameter dan kadar air rata-rata kayu kelapa yang digunakan dalam penelitian ini disajikan pada Tabel 1.

<table>
<thead>
<tr>
<th>Tabel 1. Diameter dan kadar air rata-rata kayu kelapa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1. Average diameter and moisture content of coco-wood</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sifat (properties)</th>
<th>Dolok pangkal (butt log)</th>
<th>Dolok ujung (top log)</th>
<th>Uji t (t-test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Diameter, cm</td>
<td>25,20</td>
<td>22,20</td>
<td>nyata (significant)</td>
</tr>
<tr>
<td>2. Kadar air, %</td>
<td>78,64</td>
<td>108,55</td>
<td>nyata (significant)</td>
</tr>
</tbody>
</table>
Berdasarkan hasil uji t ternyata, baik diameter maupun kadar air rata-rata dolok bagian pangkal berbeda secara nyata dengan dolok bagian ujung.

B. Sifat Penggergajian
1. Konsumsi tenaga

Nilai rata-rata konsumsi tenaga dolok pangkal dan dolok ujung pada taraf sudut kerat yang diteliti disajikan pada Gambar 2.

![Graph showing power consumption per square meter vs. hook angle degrees](image)

Keterangan :
- Dolok ujung (top log)
- Dolok pangkal (butt log)

Gambar 2. Konsumsi tenaga pada beberapa tingkat sudut kerat

Figure 2. Power consumption as related with different degrees of hook angle

Hasil analisis keragaman pada Tabel 2 menunjukkan bahwa baik faktor kelompok dolok maupun faktor sudut kerat berpengaruh secara nyata (pada taraf kepercayaan 5%) terhadap konsumsi tenaga.

<table>
<thead>
<tr>
<th>Tabel 2. Analisis keragaman konsumsi tenaga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2. Analysis of variance for power consumption</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DB (DF)</th>
<th>JK (SS)</th>
<th>RJK (S2)</th>
<th>F (r²_cal)</th>
<th>F_tal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rata-rata</td>
<td>1</td>
<td>5,0774</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kel. dolok</td>
<td>1</td>
<td>1,1756</td>
<td>1,1756</td>
<td>7,96*</td>
<td>7,71</td>
</tr>
<tr>
<td>(trunk portion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sudut kerat</td>
<td>1</td>
<td>0,5907</td>
<td>0,1477</td>
<td>21,41*</td>
<td>3,26</td>
</tr>
<tr>
<td>(hook angle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cacat</td>
<td>12</td>
<td>0,0827</td>
<td>0,0069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Produktifitas Penggergajian

Nilai rata-rata produktifitas penggergajian untuk dolok pangkal dan ujung dengan 3 taraf sudut yang digunakan disajikan pada Gambar 3.

Hasil analisis keragaman menunjukkan bahwa faktor sudut kerat mempengaruhi secara nyata produktifitas penggergajian, sedangkan kelompok dolok sebaliknya (Tabel 3).

<table>
<thead>
<tr>
<th>Tabel 3. Analisis keragaman produktifitas penggergajian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3. Analysis of variance for productivity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DB (DF)</th>
<th>JK (SS)</th>
<th>RJK (S2)</th>
<th>F_h (r²_cal)</th>
<th>F_tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rata-rata</td>
<td>1</td>
<td>11,9072</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kel. dolok</td>
<td>1</td>
<td>0,1184</td>
<td>0,1184</td>
<td>0,64</td>
<td>7,71</td>
</tr>
<tr>
<td>(trunk portion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sudut kerat</td>
<td>3</td>
<td>0,7407</td>
<td>0,1852</td>
<td>8,46*</td>
<td>3,26</td>
</tr>
<tr>
<td>(hook angle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cacat</td>
<td>12</td>
<td>0,2631</td>
<td>0,0219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Error)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hal ini terutama disebabkan karena dolok kelapa baik bagian pangkal maupun ujung relatif lebih

kecil dan lebih ringan apabila dibandingkan dengan kayu rimba.

Dari hasil uji rentang Newman-Keuls ternyata bahwa pemakalan sudut kerat 25° memberikan produktifitas penggajian yang lebih tinggi karena sudut kerat yang lebih tinggi cenderung mempertinggi kecepatan umpan (feed speed) sehingga produktifitas meningkat.

Gambar 3. Produktifitas penggajian pada beberapa tingkat sudut kerat.

Gambar 3. Sawing productivity as related with different degrees of hook angle.

3. Rendemen penggajian

Hasil pengamatan rendemen rata-rata dolok pangkal dan ujung untuk tiap sudut kerat yang dicobakan ditampilkan pada Gambar 4.

Analisis keragaman data rendemen penggajian menunjukkan bahwa baik kelompok dolok maupun sudut kerat tidak mempengaruhi nilai rendemen secara nyata (Tabel 4).

Hasil penelitian Sibayan (1976), dalam menggajai kayu kelapa dihasilkan rendemen sebesar 49,19 %. Selain itu Madrazo dan Juson (1983) melaporkan hasil rendemen menggajai kayu kelapa dengan gergaji piring sebesar 48,0 %.

IV. KESIMPULAN

2. Produktifitas penggergajian tidak dipengaruhi oleh bagian batang, akan tetapi dipengaruhi oleh sudut kerat. Sudut kerat yang lebih tinggi cenderung meningkatkan produktifitas penggergajian.

3. Rendemen penggergajian tidak dipengaruhi baik oleh bagian batang maupun sudut kerat. Nilai rendemen rata-rata yang diperoleh sebesar 46,89 %.

DAFTAR PUSTAKA

