EKSTRAKSI LEMAK DARI BIJI TENGKAWANG TUNGKUL (SHOREA STENOPTERA BURCK) DENGAN BEBERAPA PELARUT ORGANIK

Fat extraction of illipe nut kernels (S. stenoptera Burck) with several organic solvents

Oleh/By
Bambang Wiyono

Summary

The purpose of this research is to study the effect of several organic solvents and storage time on fat content, acidity, and free fatty acid content of illipe nut kernels (S. stenoptera Burck). The treatment effect was analysed by using a randomized complete block design.

The result indicated that storage time reduced moisture content of illipe nut kernels (S. stenoptera Burck), but on the contrary the storage treatment tended to increased the ash content. Extended storage time decreased fat content significantly. Acetone solvent extraction produced highly significantly effect on fat and free fatty acid content than that of the other solvents. Biochemical activity of illipe nut kernels (S. stenoptera Burck) degraded the quality, and the rate of degradation was influenced by humidity and temperature. Therefore, to maintain good kernels quality, optimum storage condition is desired.

I. PENDAHULUAN

Penelitian ini bertujuan untuk mempelajari pengaruh pemakaian jenis pelarut organik dalam ekstraksi dan lama penyimpanan biji tengkawang tungkul (Shorea stenoptera) terhadap kadar lemak kasar, bilangan asam dan kadar asam lemak bebas.

II. BAHAN DAN METODE PENELITIAN

A. Ekstraksi Lemak Tengkawang

Serbuk yang dihasilkan diambil 20 g contoh (A) dan dimasukkan ke dalam tabung soxhlet, kemudian pelarut organik (aceton, benzena atau CCl4) ditambahkan ke dalamnya sampai tabung hampir penuh. Labu soxhlet yang telah ditimbang (B) juga disi dengan pelarut organik tersebut hingga setengah bagian isi ekstraktor dan diletakkan di atas penangas air (Hotplate). Penangas dijalankan dan air pendningin dialirkan. Setelah warna pelarut dalam tabung soxhlet menjadi jernih, ekstraksi dihentikan. Pelarut yang ada dalam labu diuapkan, setelah itu disimpan dalam tanur pada suhu 105 - 110°C selama 1 jam, kemudian ditimbang sampai mencapai bobot tetap (C). Kadar lemak tengkawang kasar dihitung berdasarkan rumus berikut:

\[
\text{Kadar lemak, } \% = \frac{C - B}{A} \times 100 \%
\]
Prosedur di atas diulang lagi pada minggu ke dua dan ke empat dengan menggunakan pelarut yang yang sama.

B. Analisis Bilangan Asam dan Kadar Asam Lemak Bebas

Ke dalam labu soxhlet yang telah ditentukan kadar lemaknya, dimasukkan 70 ml etanol (96 %) dan 30 ml benzena. Campuran dikocok sampai larut, lalu dititir dengan larutan KOH 0,1 N. Sebagai indikator digunakan fenolphtalein. Penilaian dihentikan setelah warna berubah menjadi merah jambu. Bilangan asam ditentukan dengan rumus berikut:

\[
\text{Bilangan asam} = \frac{ml\ KOH \times 0,1 \times 56,1}{\text{berat contoh (g)}}
\]

Sedangkan kadar asam lemak bebas yang dihitung sebagai asam olate adalah (Sumadiwangsa dan Sili-tonga, 1974):

\[
\text{Asam olate, } \% = \frac{\text{bilangan asam}}{56,1} \times 28,2
\]

di mana 56,1 adalah berat molekul KOH.

C. Metode Analisis

Untuk mengetahui pengaruh penggunaan pelarut organik dalam ekstraksi dan lama penyimpanan terhadap kadar lemak kasar, bilangan asam dan kadar asam lemak bebas digunakan rancangan acak lengkap berblok, sedangkan nilai rata-ratanya di-ujikan dengan metode Duncan (Steel dan Torrrie, 1984).

III. HASIL DAN PEMBAHASAN

Hasil analisis kadar air dan kadar abu biji tengkawang tungkul (S. stenoptera) menunjukkan bahwa semakin lama disimpan kadar airnya menurun dan kadar abunya meningkat (Tabel 1).

<table>
<thead>
<tr>
<th>Penyimpanan (Storage time), minggu (weeks)</th>
<th>Kadar air (Moisture content)</th>
<th>Kadar abu (Ash content)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>0</td>
<td>113,37</td>
<td>2,77</td>
</tr>
<tr>
<td>2</td>
<td>70,71</td>
<td>3,88</td>
</tr>
<tr>
<td>4</td>
<td>26,42</td>
<td>4,52</td>
</tr>
</tbody>
</table>

Keterangan (Remark): Rata-rata dua kali ulangan (Mean value of two replicates)

Hasil analisis kadar lemak, bilangan asam dan kadar asam lemak bebas tengkawang tungkul (S. stenoptera) menunjukkan bahwa secara visual ekstraksi dengan pelarut aceton menghasilkan kadar lemak, bilangan asam dan kadar asam lemak bebas yang lebih tinggi dibandingkan pelarut benzena atau CC14 untuk semua tingkat penyimpanan. Sedangkan kadar lemak pelarut benzena lebih tinggi dari pelarut CC14, namun bilangan asam dan kadar asam lemak bebasnya lebih rendah. Selanjutnya, semakin lama disimpan makin terjadi penurunan kadar lemak, bilangan asam dan kadar asam lemak bebas, kecuali kadar lemak hasil ekstraksi dengan pelarut aceton (Tabel 2).

Hasil analisis sidik ragam menunjukkan bahwa blok (penyimpanan biji) berpengaruh nyata hanya terhadap kadar lemak saja, sedangkan penggunaan jenis pelarut organik dalam ekstraksi berpengaruh sangat nyata terhadap kadar lemak dan nyata terhadap kadar asam lemak bebas (Tabel 3).

Penyimpanan biji dari 0 – 4 minggu menun-kan kadar lemak yang dihasilkan secara nyata. Menurut Sumadiwangsa, et al. (1976), biji tengkawang dan juga hasil pertanian pada umumnya masih tetap mengalami aktifitas biologis. Aktifitas
Tabel 2. Sifat kimia biji tengkawang hasil ekstraksi dengan pelarut organik.

Table 2. Chemical properties of tengkawang kernels with organic solvent extraction.

<table>
<thead>
<tr>
<th>Penyimpanan, (Storage time) minggu (weeks)</th>
<th>Sifat (Properties)</th>
<th>Pelarut (Solvent) (Acetone), (Benzene), (CCl₄)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kadar lemak (Fat content), %</td>
<td>66,59</td>
</tr>
<tr>
<td></td>
<td>Bilangan asam (Acidity)</td>
<td>7,49</td>
</tr>
<tr>
<td></td>
<td>Kadar asam lemak bebas (Free fatty acid content), %</td>
<td>3,76</td>
</tr>
<tr>
<td>2</td>
<td>Kadar lemak (Fat content) %</td>
<td>60,40</td>
</tr>
<tr>
<td></td>
<td>Bilangan asam (Acidity)</td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>Kadar asam lemak bebas (Free fatty acid content), %</td>
<td>5,62</td>
</tr>
<tr>
<td>4</td>
<td>Kadar lemak (Fat content)</td>
<td>62,97</td>
</tr>
<tr>
<td></td>
<td>Bilangan asam (Acidity)</td>
<td>17,14</td>
</tr>
<tr>
<td></td>
<td>Kadar asam lemak bebas (Free fatty acid content), %</td>
<td>8,62</td>
</tr>
</tbody>
</table>

Keterangan (Remark): * Carbon tetra-chloride.

Table 3. Analysis of variance for chemical properties of tengkawang kernels.

<table>
<thead>
<tr>
<th>Sumber (Source)</th>
<th>df (df)</th>
<th>(F_{hitung}) ((F_{calculated}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kadar lemak (Fat content)</td>
</tr>
<tr>
<td>Blok (Block)</td>
<td>2</td>
<td>13,45*</td>
</tr>
<tr>
<td>Perlakuan (Treatment)</td>
<td>2</td>
<td>36,79**</td>
</tr>
<tr>
<td>Galat (Error)</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>

Keterangan (Remarks): db (df) = derajat bobas (degree of freedom).

* Nyata (Significant), P < 0,05.
** sangat nyata (Highly significant), P < 0,01.

Tabel 4. Uji Duncan sifat kimia biji tengkawang.

Table 4. Duncan test for chemical properties of tengkawang kernels.

<table>
<thead>
<tr>
<th>Sifat (Properties)</th>
<th>Nilai rata-rata (Mean value)</th>
<th>0@</th>
<th>2@</th>
<th>4@</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar lemak (Fat content)*</td>
<td>50,36</td>
<td>44,76</td>
<td>44,72</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52,76</td>
<td>44,16</td>
<td>42,92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,93</td>
<td>1,74</td>
<td>1,66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan (Remarks): @ 0, 2, dan 4 adalah lama penyimpanan dalam minggu (Storage time in weeks), A = Acetone (Acetone); B = Benzena (Benzene); C = Carbon tetra-chloride.

* Taraf (Level), 5 %. ** Taraf (Level), 1 %.

Penggunaan jenis pelarut organik dalam ekstraksi berpengaruh sangat nyata terhadap kadar lemak dan nyata terhadap kadar asam lemak bebas. Selan-
jutnya, dari uji Duncan ternyata bahwa pelarut aceton menghasilkan kadar lemak yang berbeda sangat nyata dan kadar lemak bebas yang berbeda nyata dengan pelarut benzena atau CCl₄. Sedangkan antara pelarut benzena dan CCl₄ menghasilkan kadar lemak dan kadar asam lemak bebas yang tidak berbeda nyata. Pelarut aceton menghasilkan kadar lemak dan kadar asam lemak bebas yang lebih tinggi dibandingkan kedua pelarut lainnya. Kadar asam lemak bebas yang tinggi tidak dikehendaki dalam lemak pangan, karena akan menimbulkan ketengikan.

IV. KESIMPULAN DAN SARAN

1. Penyimpanan biji tengkawang menurunkan kadar air dan meningkatkan kadar abu yang dihasilkan. Secara visual penyimpanan menurunkan kadar lemak, bilangan asam dan kadar asam lemak bebas dari lemak tengkawang hasil ekstraksi dengan pelarut aseton, benzena dan CCl₄, kecuali kadar lemak dari pelarut aceton.

2. Secara statistik, penyimpanan menurunkan secara nyata hanya sifat kadar lemak saja, sedangkan bilangan asam dan kadar asam lemak bebasnya tidak. Penggunaan jenis pelarut organik berpengaruh sangat nyata terhadap sifat kadar lemak dan nyata terhadap kadar asam lemak bebasnya. Pelarut aceton menghasilkan kadar lemak dan kadar asam lemak bebas yang sangat nyata lebih tinggi dari pelarut organik lainnya.

3. Aktifitas biologis biji tengkawang menurunkan kualitasnya dan aktifitas ini dipengaruhi oleh kelembaban udara, suhu dan tempat penyimpanan. Oleh karena itu untuk mempertahankan kualitas biji tengkawang selama penyimpanan, kondisi tersebut perlu diteliti.

DAFTAR PUSTAKA