PRAKTEK PEMBUATAN PRASARANA ANGKUTAN DI AREAL HUTAN RAWA SUMATRA SELATAN
(The practice of infrastructure construction in swamp forest areas of South Sumatra)

Oleh/By

Djahan Tinambunan

Summary

A study of the practice of infrastructure (railroads) construction in swamp forest areas of South Sumatra was carried out in 1989. The intention is to find various aspects of field operations in that specific area and their possible consequences.

It is found that supports of rails in swamp forest areas are consisted of either 4 or 5 layers of logs. In constructing those railroads, logs used vary from 140 to 177 cu.m/km with an average of 166 cu.m/km. Including the value of this material into calculation gives the total construction cost of railroad to the amount of around Rp 16.5 million per km.

Soil disturbance is found to be minimal due to narrow railroad clearing and flat topography. Problems identified in the field are the excessive use of logs for railroad construction and large amount of other logs scattered and abandoned around railroads and manual skidding (kuda-kuda) roads. It seems that there is a strong need for the government and concessionaires to seriously pay attention and create better instructions and actions in managing those valuable swamp forests on a sustainable basis.

I. PENDAHULUAN

Potensi hutan rawa di Indonesia diperkirakan masih besar. Tim Indonesian Forestry Studies yang dikutip oleh Morden dan Tinambunan (1989) menyatakan bahwa areal hutan rawa di Indonesia masih ada sekitar 32% daripada areal hak pengusahaan hutan (HPH) di daerah datar dan bergelombang yang belum dipanen, atau ekuivalen dengan luas 6,2 juta ha. Hutan ini dapat menghasilkan 30 m³/ha kayu bulat jenis komersial dengan pemanenan sistem tebang pilih. Dengan potensi yang besar tersebut dan masih kurangnya percepatan untuk teknik pengelolaannya sampai sekarang ini maka setiap usaha mencari informasi mengenai sumberdaya hutan tersebut tentulah akan bermanfaat.

Teknik pembuatan prasarana angkutan yang di-praktekkan sampai sekarang ini di hutan rawa baru lahir dengan membangun jalan rel dan jalan kuda-kuda. Untuk itu telah mulai ada beberapa penelitian di Indonesia tentang teknik dan biaya pembuatan jalan rel tersebut. Namun disadari bahwa variasi jalan rel ini di lapangan sangatlah besar. Di samping itu semua penelitian yang telah dilakukan tersebut hanya menekankan kedua aspek di atas dan belum mencakup aspek-aspek keterbukaan tanah, lingkungan secara umum dan berbagai masalah yang mungkin timbul sebagai akibat dari praktek pembuatan jalan rel tersebut.

Dalam tulisan ini disajikan berbagai aspek praktek pembuatan jalan rel di hutan rawa Sumatra Selatan dengan tujuan untuk melengkapi informasi yang telah ada dan selanjutnya mencoba mengeksplor permasalahan yang ditimbulkannya. Hal ini dirasa perlu untuk dipahami para penentu kebijakan kehutanan dan para pengusaha hutan secara baik agar untuk selanjutnya dapat mengambil tindakan-tindakan nyata untuk memperbaikinya sehingga dengan demikian pengelolaan hutan rawa dapat berjalan dengan lebih baik.

II. TINJAUAN PUSTAKA

disusun berlapis-lapis sesuai dengan keadaan tanah dan ketinggian yang dilingkung.

Dalam pelaksanaan pembuatan jalan rel di hutan rawa, Morden dan Tinambunan (1989) menemukan bahwa kegiatan survei biasanya dilakukan oleh regu kerja yang terdiri dari 5 orang untuk menentukan rute jalan rel; pembersihan lajur jalan dilakukan oleh regu kerja lain yang terdiri dari 7 orang yang membersihkan lajur selebar 4 m dan mengebel serta memotong kayu komersial di separang lajur tersebut untuk diangkat kemudian atau digunakan sebagai bahan konstruksi jalan rel. Kegiatan pemasangan rel bagian bawah (galang) dilakukan oleh regu kerja lain yang biasanya terdiri dari 6–7 orang. Pekerjaan ini sangat berat dan diperlukan sekitar 70 hari-orang (manday) untuk menyelesaikan satu km. Kegiatan selanjutnya adalah pemasangan jari-jari dan rel besi baja yang juga memerlukan sekitar 70 hari-orang per km jalan rel.

Beberapa pengukuran telah dilakukan oleh para peneliti untuk mengetahui penggunaan bahan kayu dalam pembuatan jalan rel di hutan rawa. Untuk 10 perusahaan HPH di Kalimantan dan Sumatra, Muhamar dan Dulsalam (1983) menemukan rata-rata 192,11 m³/km; untuk dua perusahaan di Riau, Dulsalam dan Sianturi (1984) menemukan sebanyak 242,867 m³/km (HPH pertama) dan 203,89 m³/km (HPH kedua); dan untuk 10 perusahaan HPH lain di Sumatra dan 6 perusahaan HPH lain di Kalimantan, Dulsalam dan Sianturi (1986) melaporkan rata-rata sebesar 126,15 m³/km (Sumatra) dan 187,68 m³/km (Kalimantan). Terlihat dari beberapa hasil penelitian ini bahwa pemasakan bahan kayu dalam pembuatan jalan rel di hutan rawa sangat bervariasi.

Banyak hal mengenai hutan rawa, terutama segi pembangunan infrastruktur dan pemanennannya secara umum serta berbagai masalah yang mungkin ditimbulkannya masih belum diketahui dan memerlukan perhatian sungguh-sungguh dari para peneliti, penentu kebijakan dan pengusahaan hutan di Indonesia.

III. LOKASI DAN METODE PENELITIAN

Konstruksi jalan rel dan jalan kuda-kuda diamati langsung di lapangan. Dua segmen jalan rel masing-masing sepanjang 10 m untuk tiap HPH telah diopname untuk mengetahui jumlah potongan, ukuran, jenis kayu, susunan pada tiap lapisan dan penaaan antar lapisan dan rel besi baja yang digunakan.

Data biaya dan informasi lainnya dikumpulkan dari pimpinan lapangan masing-masing perusahaan. Keadaan kayu dan vegetasi di sekitar jalan rel dan

IV. HASIL DAN PEMBAHASAN

A. Perencanaan

Topografi hutan rawa yang datar memberikan kemudahan dalam perencanaan tataletak jaringan jalan rel yang akan dibangun oleh karena perencanaan tidak perlu memperhatikan faktor kendala kelerengan, sepertinya hal ini pula pada perencanaan jalan di hutan tanah kering. Terlihat di lapangan bahwa perencanaan cukup memperhatikan faktor-faktor berikut:

1. Titik awal rencana jalan rel yang nantinya menjadi tempat pengumpulan atau penimbunan kayu (logyard/logpond). Disini perlu diperhatikan ke cukupan ruangan yang baik serta kemudahan kemudahan dalam operasi pengangkutan, bongkar muatan dan perakitan.

2. Lokasi petak-petak hutan yang akan dipanen pada tahun bersangkutan dan masa mendatang. Dalam hal ini jarak antara logyard/logpond dengan petak tebangan diusahakan sependek mungkin (jalan rel selurus mungkin) tetapi dengan tetap memperhatikan kemungkinan penggunaan bagian jalan rel (biasanya jalan rel utama) untuk melalui petak tebangan lain di masa mendatang.

3. Sungai yang lebar, rawa yang dalam, tanah yang terlalu lembek dan rintangan alam lainnya sedapat mungkin dihindari untuk memperkecil risiko keselamatan kerja dan biaya konstruksi yang tinggi.

4. Pertimbangan akan kesediaan bahan-bahan kayu untuk konstruksi jalan rel ternyata belum dirasa perlu. Kegiatan pembangunan jalan rel di hutan rawa ini biasanya baru merupakan pertama kali (first entry) untuk tiap lokasi sehingga di hutan perawatan tersebut hampir selalu terdapat cukup bahan kayu yang diperlukan.

Informasi awal dari keadaan lapangan biasanya diperoleh dari tim survei pendahuluan dan tim inventarisasi tegakan. Kemudian informasi yang lebih rinci dikumpulkan oleh tim survei jalan yang dibagaskan untuk konfirmasi dan melengkapi data lapangan yang diperoleh dari tim sebelumnya. Terlihat juga bahwa cara perencanaan masih sangat sederhana dan umumnya banyak didasarkan kepada pengamalan sebelumnya di daerah lain di Sumatera Selatan atau di Kalimantan Barat.

B. Konstruksi dan Pemakaian Bahan Kayu

Lapisan pertama dari bawah yang dibiayai laci-laci (first layer) dipasang sejajar arah rel dengan jarak antara 150—170 cm. Dengan arah tegak lurus di atas laci-laci dipasang bantalan (second layer) biasanya dengan jarak sekitar 100 cm satu sama lain. Di atas bantalan dipasang bujur (third layer) dengan arah sejajar dengan arah rel dan jarak di antaranya sebesar 80—100 cm. Untuk bujur ini ada juga pengusaha yang menggunakan balok (bantal) kayu berukuran sekitar 15 cm x 15 cm.

Di atas bujur ini dipasang jari-jari (fourth layer) dengan arah tegak lurus arah rel dan jaraknya bervariasi dari 50 cm sampai 290 cm tergantung kepada kekuatan kayunya. Untuk jari-jari ini pun kadang-kadang digunakan juga balok (bantalan) kayu berukuran sekitar 10 cm x 8 cm. Jari-jari inilah yang berfungsi sebagai dudukan daripada relbesa (Gambar 1 dan 2). Bila tanah yang akan dilalui jalan rel itu lembek atau ada depresi alami maka dibawah laci-laci dipasang dulu satu atau lebih lapisan kayu (base logs) sehingga permukaan rel besa baha akan relatif datar (Gambar 2).

Di atas jari-jari barulah dipasang rel besa baha (steel rails) dengan jarak 60 cm. Panjang rel yang digunakan bervariasi dari 6—8 m dengan bentuk T 10 di kedua sisi atas dan bawahnya. Rel ini dipakuan ke jari-jari dengan paku besa khusus yang berben-
Legenda/Legend:
A = Laci-laci (First layer); B = Bantalan (Second layer); C = Bujuran (Third layer); D = Jari-jari (Fourth layer); E = Rel batu baja (Steel rails); F = Permukaan tanah (Ground surface).

Gambar 1. Penampang melintang jalan rel di areal hutan rawa

Figure 1. Cross sectional view of railroad in swamp forest

Legenda/Legend:
A = E sama dengan Gambar 1 (Same as those in Figure 1); F = Alas (Base logs); G = Permukaan tanah (Ground surface)

Gambar 2. Penampang melintang jalan rel lain di hutan rawa

Figure 2. Another cross sectionnal view of railroad in swamp forest

Tutik L. Sedang jari-jari dilekatkan pada bujurun dengan menggunakan paku biasa ukuran 12 cm.

Pengumpulan bahan kayu dan pelaksanaan pembangunan gali tergantung biasanya dilakukan oleh satu regu kerja yang terdiri dari 5-7 orang. Untuk 7-8 jam kerja sehari dapat diselesaikan antara 200-300 m. Sedang untuk memasang jari-jari dan rel batu baja dilakukan oleh regu kerja lain yang juga terdiri dari 5-7 orang. Untuk 7-8 jam kerja sehari regu ini dapat menghasilkan 100-150 m.

Rincian penggunaan bahan kayu untuk masing-masing lapisan pada jalan rel disajikan pada Tabel 1. Terlihat bahwa pemakaian bahan kayu bervariasi dari 140 sampai 177 m³/km jalan rel dengan rata-rata 166 m³/km. Dengan asumsi harga kayu ini sebesar Rp 56.000/m³ (separuh dari harga kayu bulat berdiameter besar pada tahun 1989 sebesar US $ 60/m³ atau Rp 108.000/m³) maka nilai bahan kayu saja sudah mencapai Rp 7.560.000 sampai Rp 9.558.000/km dengan nilai rata-rata sebesar Rp 8.964.000/km. Jumlah volume pemakaian dan nilai kayu ini ternyata tinggi.

Untuk menghubungkan petak tebang dengan jalan rel dibengun jalan kuda-kuda yang terdiri dari dua lapisan kayu bulat ukuran kecil (panjang dan tinggi). Lapisan pertama dipasang memanjang ke arah penyinaran sebanyak-dua baris kayu bulat dengan panjang sekitar 2,5 m, diameter sekitar 10 cm dan jarak antara baris sebesar 95 cm. Lapisan kedua (di atas lapisan pertama) terdiri dari kayu-kayu bulat dengan panjang sekitar 1,2 m dan diameter sekitar 8 cm, dipasang tegak lurus terhadap lapisan pertama dengan jarak sekitar 75 sampai 100 cm. Di atas lapisan kedua inilah kuda-kuda yang memuat kayu bulat ditarik dengan tenaga manusia (regu petak) yang biasanya terdiri dari 6-8 orang per regu.

Tabel 1. Pemakaian kayu per km dalam konstruksi jalan rel di areal hutan rawa

Table 1. Logs used per km for railroad construction in swamp forest areas

<table>
<thead>
<tr>
<th>Elemen / Elements</th>
<th>Panjang / Length (m)</th>
<th>Diameter Batang / Diameter (cm)</th>
<th>Volume / Pieces (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perusahaan (Company) I</td>
<td>1</td>
<td>Contoh (Sample) 1</td>
<td></td>
</tr>
<tr>
<td>Laci-laci (First layer)</td>
<td>5,0</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>Bantalan/Second layer</td>
<td>3,0</td>
<td>20</td>
<td>800</td>
</tr>
<tr>
<td>Bujuran/Third layer</td>
<td>5,0</td>
<td>16</td>
<td>400</td>
</tr>
<tr>
<td>Jari-jari/Fourth layer</td>
<td>1,2</td>
<td>10</td>
<td>2,400</td>
</tr>
<tr>
<td>Total</td>
<td>154,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perusahaan (Company) II</td>
<td>2</td>
<td>Contoh (Sample) 2</td>
<td></td>
</tr>
<tr>
<td>Laci-laci</td>
<td>5,0</td>
<td>13</td>
<td>400</td>
</tr>
<tr>
<td>Bantalan</td>
<td>2,5</td>
<td>18</td>
<td>800</td>
</tr>
<tr>
<td>Bujuran</td>
<td>6,0</td>
<td>15</td>
<td>400</td>
</tr>
<tr>
<td>Jari-jari</td>
<td>3,3</td>
<td>11</td>
<td>2,600</td>
</tr>
<tr>
<td>Total</td>
<td>139,798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perusahaan (Company) III</td>
<td>3</td>
<td>Contoh (Sample) 3</td>
<td></td>
</tr>
<tr>
<td>Laci-laci</td>
<td>5,3</td>
<td>15</td>
<td>377</td>
</tr>
<tr>
<td>Bantalan</td>
<td>2,9</td>
<td>20</td>
<td>900</td>
</tr>
<tr>
<td>Bujuran *)</td>
<td>4,0</td>
<td>15 cm x 15 cm</td>
<td>800</td>
</tr>
<tr>
<td>Jari-jari *)</td>
<td>1,2</td>
<td>10 cm x 8 cm</td>
<td>2,300</td>
</tr>
<tr>
<td>Total</td>
<td>167,461</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

45
Contoh (Sample) 4

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Laci-laci</td>
<td>5,5</td>
<td>15</td>
<td>366</td>
</tr>
<tr>
<td>Bantal</td>
<td>2,5</td>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td>Bujuan</td>
<td>4,0</td>
<td>15</td>
<td>600</td>
</tr>
<tr>
<td>Jari-jari</td>
<td>1,3</td>
<td>10</td>
<td>2,900</td>
</tr>
</tbody>
</table>

Total 165,148

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Perusahaan (Company) III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alas/Base logs</td>
<td>2,6</td>
<td>11</td>
<td>459</td>
</tr>
<tr>
<td>Laci-laci</td>
<td>3,5</td>
<td>11</td>
<td>660</td>
</tr>
<tr>
<td>Bantal</td>
<td>2,0</td>
<td>20</td>
<td>1,000</td>
</tr>
<tr>
<td>Bujuan</td>
<td>5,0</td>
<td>17</td>
<td>400</td>
</tr>
<tr>
<td>Jari-jari</td>
<td>1,5</td>
<td>12</td>
<td>2,400</td>
</tr>
</tbody>
</table>

Total 176,573

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alas/Base logs</td>
<td>2,6</td>
<td>11</td>
<td>400</td>
</tr>
<tr>
<td>Laci-laci</td>
<td>3,8</td>
<td>14</td>
<td>600</td>
</tr>
<tr>
<td>Bantal</td>
<td>2,0</td>
<td>14</td>
<td>700</td>
</tr>
<tr>
<td>Bujuan</td>
<td>5,0</td>
<td>19</td>
<td>400</td>
</tr>
<tr>
<td>Jari-jari</td>
<td>1,5</td>
<td>9</td>
<td>3,000</td>
</tr>
</tbody>
</table>

Total 193,347

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rata-rata/Average</td>
<td>165,721</td>
</tr>
</tbody>
</table>

Keterangan/Remark:

* *) = Berbentuk blok (wood blocks)

C. Biaya Konstruksi

Komposisi dan besarnya biaya konstruksi jalan rel per km adalah sebagai berikut:

Bahan:

1. Rel besi baja Rp 6.000.000,-
2. Paku rel dan paku biasa Rp 423.000,-
3. Kayu Rp 8.964.000,-

U p a h:

1. Pemasangan galang Rp 650.000,-
2. Pengadaan jari-jari Rp 194.000,-
3. Pemasangan jari-jari dan rel besi baja Rp 275.000,-

jumlah Rp 16.506.000,-

Nilai bahan kayu biasanya tidak diperhitungkan orang oleh karena bahan tersebut tinggal mengambil saja dari sekitar lokasi pembuangan jalan rel. Mereka lupa bahwa kayu-kayu tersebut adalah sumberdaya hutan yang mempunyai nilai ekonomi yang tinggi dan jumlahnya terbatas serta laju pertumbuhan tegakan sisanya belum diketahui.

D. Keterbukaan Tanah dan Gangguan Lingkungan

Dalam persiapan pembuangan jalan rel, daerah rencana jalan rel tersebut dibersihkan dari semua vegetasi yang ada (right of way clearing) selebar sekitar 4 m. Tanah tidak diganggu dan pohon-pohon yang ditinggalkan di sisi rencana jalan rel tersebut yang kemudian digunakan sebagai bahan konstruksi galang (diameter agak kecil) atau diangkat ke logyard/logpond (kayu diameter besar). Dengan praktek demikian maka keterbukaan tanah hutan adalah minimal yang memupukan kebalian daripada operasi pembuatan jalan truk angkutan di tanah kering. Keterbukaan yang kecil demikian itu dinunungkinkan oleh keasem jalan rel yang dibangun hanya terdiri dari satu lajur (sepasang rel) dan jalan rel tersebut tidak memerlukan tebang bayang.

Kombinasi antara keterbukaan tanah yang kecil dan topografi medan yang datar menyebabkan gangguan lingkungan yang kecil. Ditambah keadaan lokasi yang berawa-rawa dan umumnya jauh dari puset-puset pemukiman masyarakat menyebabkan gangguan lain berupa, pembuakan lahan hutan untuk tujuan lain hampir tidak ada.

Pembuatan jalan rel ternyata merangsang pertumbuhan berbagai jenis vegetasi di kedua sisi-nya. Untuk segmen jalan rel yang agak sering dalam keadaan kering terlihat pertumbuhan semak belukar yang cepat dan demikian juga untuk tanah yang seketat terdengan terlihat juga pertumbuhan yang cepat: daripada tunas-tunas dari tungkan dan pohon-pohon yang petak atau terpotong di sekitar jalan rel. Sekitar 6 bulan setelah pensabangan rel selesai, di kedua sisi jalan rel telah tampak banyak tumbuhan dan tunas muda yang segar dan setelah sekitar satu tahun atau lebih kedua sisi jalan rel telah tertutup rapat oleh tuanbahan yang hijau.

menyegarkan. Di banyak tempat, naungan dari atas oleh pohon-pohon sisa (olah karena tidak memerlukan tebang bagang) ditambah keberadaan vegetasi yang rapi di kedua sisinya jalanan rel menyebabkan jalanan rel tersebut terlihat sebagai terowongan yang hijau, indah dan uciehanya sejuk. Lebar keterbukaan jalanan rel seperti ini biasanya tinggal pesan sekedar lori yang melaluiinya setiap hari yaitu 3 m.

Jalan rel yang beru dan sedang dibunuh membentuk pemandangan yang kurang baik. Potongan-potongan kayu bulat dan patahan pohon-pohon di sekitar jalan rel biasanya banyak berserakan. Potongan-potongan kayu bulat tersebut sebagian di peruntukkan sebagai bahan konstruksi jalan rel, sebagian akan dianakut ke fogyard (kayu diameter besar) dan banyak sisanya memang tertinggal membusuk di lokasi asalnya tersebut.

Pemandangan yang kurang baik terlihat juga pada jalan rel tua atau yang telah mengalami penggantian, kayu galamnya oleh karena di sekitar jalan rel tersebut banyak terdapat kayu bekas yang berserakan. Biasanya penggantian galang dilakukan tiap tahun sehingga untuk segmen jalan yang telah mengalami penggantian beberapa kali, jumlah kayu bekas yang berserakan tersebut sangat banyak. Ini terjadi karena seleksi jenis kayu yang digunakan masih lemah dan pengambilan para kontraktor dan pengusahaan hutan akan efisiensi penggunaan kayu juga masih sangat kurang.

E. Beberapa Masalah

Dalam praktek pembuatan prasarana angkutan hasil hutan di areal hutan rawa, yaitu berupa jalan rel, terlihat beberapa masalah sebagai berikut:

2. Penetapan jenis kayu yang boleh digunakan dalam konstruksi jalan rel belum ada. Para pengusaha boleh memanfaatkan dan menggunakan jenis apa saja yang ada di sekitar lokasi jalan relnya. Keadan ini mengakibatkan banyak kayu yang kelas swetnya rendah (cepat busuk) dibuang dan digunakan dalam pembangunan jalan rel. Kayu-kayu ini tiap tahun perlu diganti dan untuk itu perlu ditebang yang baru lagi. Dikhatwirkan bahwa laju penebangan ini jauh melebihi laju pertumbuhan tagakan sisa yang ada dan kayu-kayu jenis seperti ini akan habis segara pada halase kesungguhan yang lebih sesuai dan bermanfaat belum diketahui.

4. Biaya operasi pemanenan pindah ke lajur atau petak tebang lain maka rel besi bawana biasanya dipindahkan dari tempat lama ke tempat baru sedang kayu-kayunnya ditinggalkan. Dari segi operasi perusahaan jangka pendek memang cara inilah yang paling ekonomi tetapi dari segi pengawasan, pembangunan dan pembinaan areal hutan secara keseluruhannya maka ketiadaan akses ke areal yang telah selesai dipanen akan menyulitkan. Dalam hal ini dirasa perlu adanya pengaturan agar pengelolaan hutan rawa, lebih-lebih yang telah dipanen, dapat berjalan dengan baik.

5. banyaknya kayu yang berserakan di sekitar jalan rel di tanah rawa merupakan suatu pemborosan sumberdaya hutan yang cukup besar dan memerlukan pemikiran akan cara pemanfaatannya. Kayu-kayu tersebut terdiri dari berbagai jenis yang berarti berbagai karakteristik yang terdiri dari kayu yang dipotong dalam rangka pemberehan rute jalan rel, kayu dari patahan tagakan sisa dan kayu bekas galang jalan rel yang telah diganti. Kayu-kayu ini tetapi mempunyai potensi yang besar untuk diolah dan dimanfaatkan lebih lanjut.
V. KESIMPULAN

Perencanaan jaringan jalan rel di hutan rawa lebih sederhana daripada perencanaan jalan truk angkutan di hutan tanah kering oleh karena topografinya datar. Konstruksinya terdiri dari beberapa lapis kayu bulat yang arah satu lapis dengan lapis lain dibuat tegak lurus satu sama lain. Yang ber variasi adalah jumlah lapisan kayu yang digunakan, ukuran kayu dan jumlah kayu per satuan panjang jalan rel.

Dalam penelitian ini ditemukan jalan rel yang mempunyai 4 lapis dan 5 lapisan kayu dalam galang rel dengan pemakaian kayu berkisar antara 140 sampai 177 m²/km dengan rata-rata 166 m²/km. Dengan memasukkan nilai bahan kayu ini ke dalam perhitungan maka biaya pembangunan jalan rel per km adalah sekitar Rp 16,5 juta.

Keterbukaan tanah dan gangguan lingkungan akibat pembangunan jalan rel di hutan rawa adalah minimal. Yang dirasakan sebagai masalah adalah pemborosan kayu dalam pembangunan jalan rel akibat pemakaian dalam konstruksi yang berlebihan dibat dari segi jumlah dan jenis kayu serta kerusakan yang banyak akibat pembuatan jalan kuda-kuda.

Usaha untuk mencegah pemborosan penggunaan kayu dalam pembangunan jalan rel dan jalan kuda-kuda di hutan rawa ini perlu segera mendapat perhatian dari pemerintah bersama para pengusahaan hutan. Di samping itu perlu segera dipertimbangkan usaha pemakaian baru kayu-lapangan yang banyak berasal di sekitar jalan rel dan jalan kuda-kuda yang akan sangat sayang bila hanya dihiraukan membosankan begitu saja. Selain itu pengaturan pembangunan jalan rel dan bahan kayu yang digunakan juga perlu segera diadakan.

DAFTAR PUSTAKA

