PRODUKSI BIOGAS DARI LIMBAH PENGOLAHAN KELAPA SAWIT DENGAN PROSES FERMENTASI PADAT

The Possible Production of Biogas from Wastes of Palm-Oil Solid Fermentation Processing

Oleh/By:
R. Sudradjat, Erra Y., Umi K. dan Evi K.

SUMMARY

The aim of this investigation was to evaluate the characteristic of biogas produced from the wastes of palm-oil solid fermentation processing, the assessment on its potential prospect was also studied.

The wastes consist of the mixture of empty bunches, pericarp, and sludge. The mixing ratio in weight was 1.3 : 1.2 : 1.0 respectively. The conditions implemented in the fermentation process were temperature (55°C), and content of dry matters or substrate (i.e. mixture of empty bunches, pericarp, and sludge) in the fermentation digester (35 %). The fermentation was conducted either in batch or continuous system. The weight ratios between substrate and inoculum were consecutively 25 : 500, 50 : 500, 75 : 500, and 100 : 500.

Results revealed that fermentation in the batch system at 25 : 500 ratio as such afforded biogas with the highest yield (145 ml per liter-hour) and the most intense degradation on the organic matters (32.3 % VS), meanwhile, the fermentation using continuous system at 25 : 500 brought out biogas with the highest production (1623.7 ml per liter-d).

Keywords: Palm oil processing, wastes, fermentation, substrate, and inoculum.

RINGKASAN

Tujuan dari penelitian ini adalah mengetahui potensi dan karakteristik biogas yang dihasilkan dari limbah pengolahan kelapa sawit melalui proses fermentasi padat.

Hasil penelitian menunjukkan bahwa rasio substrat dengan inokulum 25 : 500 menghasilkan biogas terbesar (145 ml/liter-jam) dan degradasi bahan organik terbesar (32,3 % VS). Rasio tersebut juga memberikan hasil produksi biogas terbesar untuk continuous process (1623,7 ml/liter-hari).

Kata Kunci: Pengolahan kelapa sawit, limbah, fermentasi, substrat, dan inokulum.
I. PENDAHULUAN

II. TINJAUAN PUSTAKA

A. Limbah Pabrik Kelapa Sawit (LPKS)

Produk olahan kelapa sawit terdiri dari hasil kelapa sawit yang telah diolah, yaitu berupa minyak sawit dan inti sawit, serta jenis produk lain berupa limbah pabrik kelapa sawit yang meliputi tempurung, tandan kosong kelapa sawit, perikarp (serabut), lumpur dan limbah sawit lainnya (Naibaho, 1983).

Produksi biogas menggunakan bahan baku limbah mempunyai keuntungan antara lain penurunan jumlah padatan organik, jumlah mikroorganisme pembusuk yang tidak diinginkan serta kandungan racun limbah (Judoamidjojo et al., 1990). Di samping itu residu biogasnya dapat digunakan sebagai pupuk organik non fitotoksik (Sudradjat, 1991).

B. Biogas

Menurut Komarayati et al. (1986) produksi biogas mendapat perhatian karena dua alasan. Pertama, produk akhir (biogas) sebagai campuran CH₄ dan CO₂ adalah gas mudah terbakar, yang bersifat hampir sama seperti gas alam dan merupakan sumber energi. Kedua, melalui fermentasi, bahan organik didegradasi secara anaerobik menjadi bentuk gas yang tidak berbahaya. Hal ini menguntungkan bagi teknologi lingkungan dalam hal penanganan limbah organik.

Tobing (1987) menyatakan komposisi biogas bervariasi tergantung dari tipe bahan masukan dan kondisi prosesnya. Pada umumnya biogas mengandung 60 - 70 persen CH₄, 20 - 40 persen CO₂, 0,2 - 0,3 H₂S, sedikit etan dan air.
C. Fermentasi Anaerobik

Proses fermentasi anaerobik adalah perombakan bahan organik yang dilakukan oleh sekelompok mikroorganisme anaerobik fakultatif maupun obligat dalam suatu reaktor tertutup yang dioperasikan pada temperatur mesofilik (35° C) atau termofilik (55° C). Proses tersebut berlangsung pada kadar bahan kering 30 - 35 persen (De Baere et al., 1985).

Asam volatil rantai pendek dan alkohol dari tahap kedua dirombak oleh bakteri asetogenik (produsen H₂), menghasilkan asetat, CO₂ dan H₂ pada tahap ketiga (Hashimoto et al., 1980). Produk dari fase non-metanogenik (terutama asetat, CO₂ dan H₂) selanjutnya digunakan oleh bakteri metanogenik untuk menghasilkan gas metan (Speece, 1980).

D. Faktor Yang Mempengaruhi Proses

1. Suhu

2. Laju pembebanan (Loading rate)

Produksi biogas juga tergantung pada bobot padatan volatil yang ditambahkan per volume digestor per hari. Hal ini berarti jumlah biogas yang dihasilkan tergantung pada jumlah substrat (Subramanian, 1978).

Menurut Stafford et al. (1980), laju beban yang terlalu tinggi dapat menghasilkan keadaan jenuh dimana asam lemak volatil (VFA) meningkat. Produksi gas akan menurun dan proporsi CO₂ bertambah.

3. Nisbah C/N

4. Substrat

Mikroorganisme memerlukan hara seperti karbohidrat, lemak, protein dan fosfor agar proses perombakan anaerob berlangsung efisien dan mampu menghasilkan metan (Adams, 1981). Namun demikian bahan berserat seperti limbah padat PKS mengandung lignin yang merupakan senyawa inhibitor.

5. Nilai pH

Menurut Hashimoto et al. (1981), produksi biogas berlangsung baik selama pH sistem diatur antara 6,6 – 7,6, tetapi lebih baik lagi pada selang 7,0 – 7,2. Bakteri asam (De Wilde dan Vanhille, 1985) mempunyai selang pH antara 4,5 – 7,0.

6. Waktu retensi

Apabila waktu retensi rendah, bakteri metanogenik tidak memperoleh kesempatan untuk berkembang biak. Waktu yang diperlukan untuk berkembang biak bagi producer metan sekitar dua sampai empat hari atau lebih. Waktu retensi yang lebih pendek daripada periode waktu tersebut dapat menyebabkan hilangnya bakteri dari digester sebelum mikroorganisme berkembang biak, sehingga keseluruhan proses akan terhenti (Meynell, 1976).

7. Pengadukan

Pengadukan dilakukan untuk memudahkan kontak antara mikroorganisme dengan substrat dan meningkatkan laju dekomposisi dengan membebaskan (mengeluarkan) gelembung gas yang terjerat dalam matrik sel mikroorganisme (Subramanian, 1978).

III. METODOLOGI

A. Bahan dan Alat

1. Bahan

Bahan baku substrat terdiri dari tandan kosong kelapa sawit (TKKS), perikarp dan lumpur LPKS. Bahan untuk inokulum dibuat dari campuran kotoran sapi dan eceng gondok. Bahan yang dibutuhkan untuk analisis, antara lain adalah aquades, kalium permanganat, perak sulfat, asam oksalat, etanol 95 persen, HCl pekat 12N, K₂Cr₂O₇ 0,25N, H₂SO₄ pekat, Fe₂ (NH₄)₂ (SO₄)₃ 0,25N, AgSO₄, indikator feroin, selenium, NaOH 50 persen, H₃BO₃ 0,02N, HCl 0,02N, indikator mengsel, dan kertas pH.

2. Alat

Susunan alat proses pembuatan biogas meliputi reaktor satu liter, selang plastik, inkubator, gelas ukur serta gas holder. Sedangkan untuk keperluan analisis digunakan
injektor, tabung penampung gas, kromatografi gas dan peralatan analisis substrat dan residu biogas.

B. Metode

1. Penyiapan inokulum

2. Penyiapan substrat

 Perikarp dan TKKS dikeringkan, kemudian digiling dengan ukuran ± 20 mesh. Substrat dibuat dari campuran TKKS, perikarp dan lumpur dengan perbandingan 1.3 : 1.2 : 1.0. Kadar air substrat diatur sekitar 65 persen guna memenuhi kondisi proses yang diinginkan. Pada penelitian ini digunakan empat macam kombinasi substrat-inokulum, yaitu 25 vs 500, 50 vs 500, 75 vs 500 dan 100 vs 500 gram atas dasar bobot basah, baik pada cara curah maupun sinambung.

3. Fermentasi

 Fermentasi dilakukan dalam reaktor stainless berkapasitas 2 liter. Pengumpanan dikerjakan secara curah (De Wilde dan Vanhille, 1985). Pada sistem fermentasi curah pengumpanan dihentikan pada waktu jumlah inokulum (500 gram) diperkirakan telah tersubstitusi oleh substrat LPKS (influen). Tujuannya untuk mengamati produksi biogas dari substrat LPKS.

4. Analisis data

 Data yang diperoleh selama periode fermentasi anaerobik adalah data produksi biogas, pengukuran kadar metan, perhitungan efisiensi metan serta analisis residu biogas. Parameter yang dialisasi antara lain kadar air, bahan kering, padatan volatil, COD dan nisbah C/N.

IV. HASIL DAN PEMBAHASAN

A. Karakteristik Substrat dan Inokulum

Tabel 1. Analisis kimia substrat dan inokulum
Table 1. Chemical analysis of substrate and inoculum

<table>
<thead>
<tr>
<th>Substrat (Substrate)</th>
<th>Inokulum (Inoculum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahan kering (Dry matter), %</td>
<td>70,06</td>
</tr>
<tr>
<td>Kadar air (Moisture), %</td>
<td>29,94</td>
</tr>
<tr>
<td>Padatan volatile (Volatile solid), %</td>
<td>93,14</td>
</tr>
<tr>
<td>Abu (Ash), %</td>
<td>6,86</td>
</tr>
<tr>
<td>Selulosa (Cellulose), %</td>
<td>26,50</td>
</tr>
<tr>
<td>Hemiselulosa (Hemicellulose), %</td>
<td>13,60</td>
</tr>
<tr>
<td>Lignin (Lignin), %</td>
<td>15,00</td>
</tr>
<tr>
<td>Lemak (Fat), %</td>
<td>3,53</td>
</tr>
<tr>
<td>Protein (Protein), %</td>
<td>6,55</td>
</tr>
<tr>
<td>Karbon (Carbon), %</td>
<td>23,72</td>
</tr>
<tr>
<td>Nitrogen (Nitrogen), %</td>
<td>0,90</td>
</tr>
<tr>
<td>Nisbah C/N (C/N ratio)</td>
<td>26,35</td>
</tr>
<tr>
<td>Kadar air (Moisture), %</td>
<td>78,25</td>
</tr>
<tr>
<td>Padatan volatile (Volatile solid), %</td>
<td>84,27</td>
</tr>
<tr>
<td>Bahan kering (Dry matter), %</td>
<td>21,75</td>
</tr>
</tbody>
</table>

Keterangan (Remark) : *) Persentase dari padatan volatile (Percentage of volatile solid)

B. Fermentasi Sistem Curah

1. Pengaruh laju beban terhadap efisiensi reduksi bahan organik

Hasil analisis residu biogas selama proses perombakan anaerobik disajikan pada Tabel 2. Pengumpulan pada laju beban yang berlainan mempengaruhi proporsi bahan padatan dalam digester pada saat feeding terakhir.

Tabel 2. Analisis residu biogas hasil proses fermentasi padat
Table 2. Biogas residue analysis after solid state fermentation process

<table>
<thead>
<tr>
<th>Parameter Analisis (*) (Analysis parameter)</th>
<th>25 vs 500</th>
<th>50 vs 500</th>
<th>75 vs 500</th>
<th>100 vs 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>% BK</td>
<td>35,36</td>
<td>24,86</td>
<td>10,72</td>
<td>29,69</td>
</tr>
<tr>
<td>% PV</td>
<td>29,64</td>
<td>20,06</td>
<td>9,50</td>
<td>32,32</td>
</tr>
<tr>
<td>Substrat (Substrate)</td>
<td>311,65</td>
<td>307,22</td>
<td>304,81</td>
<td>229,96</td>
</tr>
<tr>
<td>TBK (g)</td>
<td>310,16</td>
<td>77,45</td>
<td>32,71</td>
<td>29,69</td>
</tr>
<tr>
<td>TPV (g)</td>
<td>92,34</td>
<td>62,46</td>
<td>26,86</td>
<td>32,33</td>
</tr>
<tr>
<td>COD (g/PV)</td>
<td>4,38</td>
<td>2,98</td>
<td>2,29</td>
<td>52,28</td>
</tr>
<tr>
<td>COD (g)</td>
<td>404,44</td>
<td>130,60</td>
<td>273,84</td>
<td>67,71</td>
</tr>
</tbody>
</table>

*) Keterangan (Remarks) :
- Substrat (Substrate) = $S_n = (S_{n+1} + F) - S_n$
- Dimana (Where) : $S_n = F + P_n$
- $P_n = F + S_{n+1}$
- BK (Bahan kering / dry matter) = %BK x S_n
- PV (Padatan volatile / volatile solid) = %PV x S_n

S_n = Sisa substrat dalam digester pada hari ke-n (Substrate residue in digester at days-n)

S_{n+1} = Substrat yang terambil pada hari ke-n (Substrate has been taken at days-n)

F = Jumlah umpan substrat (= F_n) (Inoculum for substrate)

P_n = Peluang substrat yang terambil pada hari ke-n (Substrate probability has been taken at days-n)

V_n = Jumlah bahan padatan dalam digester (500 gram) (Total dry matter in digester)

232
Tingkat degradasi BK dan PV tertinggi yaitu pada laju beban 25 g/l sebesar 26,29 dan 32,32 persen. Efisiensi perombakan bahan organik cenderung berkurang apabila laju beban meningkat, seperti terlihat pada Gambar 2.

Gambar 2. Grafik efisiensi reduksi BK, PV dan COD
Figure 2. Reduction efficiency graphic of BK, PV and COD

Perbedaan tingkat perombakan di atas dapat disebabkan oleh kandungan bahan organik pada laju beban 25 g/l relatif lebih rendah. Hal ini dapat dilihat dari nilai COD (404,44 gram). Dengan demikian beban limbah atau beban kerja mikroorganisme dalam menguraikan senyawa bahan organik cenderung lebih ringan, sehingga efisiensi reduksi relatif lebih besar.

2. Pengaruh laju pembebanan terhadap waktu retensi dan produksi biogas

Tabel 3a menyajikan hasil perhitungan produksi biogas sedangkan produksi metan ditunjukkan pada Tabel 3b. Hasil pengamatan menunjukkan pada laju beban yang makin tinggi ternyata diperlukan waktu retensi yang makin lama untuk merombak substrat dalam digester, meskipun volume biogas total cenderung bertambah (Tabel 3a).

<table>
<thead>
<tr>
<th>Laju Beban (Loading rate), g/l</th>
<th>Waktu Retensi (Retention time)</th>
<th>Produksi Biogas (Biogas production) *)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ml</td>
</tr>
<tr>
<td>25 vs 500</td>
<td>68</td>
<td>7390</td>
</tr>
<tr>
<td>50 vs 500</td>
<td>101</td>
<td>9064</td>
</tr>
<tr>
<td>75 vs 500</td>
<td>106</td>
<td>8680</td>
</tr>
<tr>
<td>100 vs 500</td>
<td>113</td>
<td>9940</td>
</tr>
</tbody>
</table>

*) Keterangan (Remarks) : ml/l.h = ml/l.hari; PVA = padatan volatil awal; Pr = padatan volatil rombak
Tabel 3b. Laju produksi metan hasil proses fermentasi padat
Table 3b. Methane production rate after solid state fermentation process

<table>
<thead>
<tr>
<th>Laju Beban (Loading rate), g/l</th>
<th>Produksi Biogas (Biogas production) *)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ml/l.h</td>
</tr>
<tr>
<td>25 vs 500</td>
<td>95.62</td>
</tr>
<tr>
<td>50 vs 500</td>
<td>56.87</td>
</tr>
<tr>
<td>75 vs 500</td>
<td>60.33</td>
</tr>
<tr>
<td>100 vs 500</td>
<td>62.60</td>
</tr>
</tbody>
</table>

*) Keterangan (Remarks) : Efisiensi (Efficiency) = E/t, di mana (where) E = ml/g dan (and) CODa t = 350 ml

Tabel 4. Reduksi padatan volatil dan COD hasil proses fermentasi padat
Table 4. Reduction of volatile solid and COD after solid state fermentation process

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Laju Pembebanan (Loading rate), g/l.h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25 vs 500</td>
</tr>
<tr>
<td></td>
<td>Awal (Start)</td>
</tr>
<tr>
<td>PV (%)</td>
<td>29.89</td>
</tr>
<tr>
<td>COD (mg/g)</td>
<td>1150.57</td>
</tr>
<tr>
<td>PVr (gram)</td>
<td>-</td>
</tr>
<tr>
<td>CODr (gram)</td>
<td>-</td>
</tr>
</tbody>
</table>

C. Fermentasi Biogas Sistem Sinambung

1. Perombakan padatan volatil dan COD

Substrat yang digunakan termasuk bahan berlignoselulosa, yang cukup banyak mengandung selulosa, hemiselulosa dan lignin (Tabel 1). Senyawa tersebut relatif sulit didegradasi akibat interaksi fisis dan kimia antara selulosa dan lignin. Minyak yang terkandung dalam bahan substrat LPKS diperkirakan juga menghambat aktifitas bakteri metan. Dengan demikian konversi energi menjadi kurang sempurna.

2. Produksi biogas

Tabel 5a dan Tabel 5b menunjukkan hasil perhitungan produksi biogas dan metan. Proses perombakan anaerobik dengan pengumpaman sinambung memberikan hasil bahwa peningkatan laju beban cenderung menurunkan produksi biogas maupun produksi metan dalam waktu retensi yang sama.

Tabel 5a. Laju produksi biogas pada laju beban berbeda

Table 5a. Biogas production rate at different loading rate

<table>
<thead>
<tr>
<th>Laju Beban (Loading rate), g/l.h</th>
<th>Produksi Biogas (Biogas production)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ml (total)</td>
</tr>
<tr>
<td>25 vs 500</td>
<td>109600</td>
</tr>
<tr>
<td>50 vs 500</td>
<td>70925</td>
</tr>
<tr>
<td>75 vs 500</td>
<td>69300</td>
</tr>
<tr>
<td>100 vs 500</td>
<td>64135</td>
</tr>
</tbody>
</table>

Tabel 5b. Laju produksi gas metan pada laju beban berbeda

Table 5b. Methane production rate at different loading rate

<table>
<thead>
<tr>
<th>Laju Beban (Loading rate), g/l.h</th>
<th>Produksi Biogas (Biogas production)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ml/l.h</td>
</tr>
<tr>
<td>25 vs 500</td>
<td>863.85</td>
</tr>
<tr>
<td>50 vs 500</td>
<td>561.04</td>
</tr>
<tr>
<td>75 vs 500</td>
<td>601.70</td>
</tr>
<tr>
<td>100 vs 500</td>
<td>375.05</td>
</tr>
</tbody>
</table>

Penambahan kadar substrat ternyata tidak meningkatkan aktifitas bakteri metanogenik dalam mengkonversi asam organik menjadi biogas. Kedua jenuh pada laju beban yang tinggi mengakibatkan aktifitas bakteri metan terhambat. Laju pembentukan asam diperkirakan menjadi lebih besar daripada laju peningkatan populasi metanogenesis karena penurunan waktu tinggal rata-rata bakteri metan. Ditinjau dari Tabel 5a dan Tabel 5b, maka kombinasi substrat-inokulum yang menghasilkan produktifitas biogas tertinggi (1623.70 ml/l.h) dan efisiensi metan terbesar (27.99 persen) adalah 25 vs 500 gram.
V. KESIMPULAN DAN SARAN

A. Kesimpulan

Tingkat perombakan bahan organik pada proses fermentasi padat sistem curah (6,0 - 33,0 persen) tertinggi terdapat pada laju beban 25 g/l (32,33 persen). Produktifitas biogas (117,00 – 145,00 ml/l.h) dan efisien metan (2,0 – 4,0 persen) cenderung makin menurun pada laju beban yang makin besar. Ditinjau dari efektifitas proses dan waktu retnsi, maka kombinasi substrat-inokulum terbaik adalah 25 vs 500 gram, yang mempunyai produktifitas terbesar (144,90 ml/l.h dan 5,8 ml/l.h.g SS), dengan efisiensi metan 3,45 persen. Pada sistem sinambung tingkat perombakan bahan organik (17,00 – 38,00 persen) cenderung menurun pada laju beban yang makin meningkat, dengan efisiensi reduksi tertinggi pada laju beban 25 g/l.h (37,60 persen).

Produktifitas biogas yang diperoleh berkisar antara 950 - 1650 ml/l.h dan efisiensi metan antara 10 - 28 persen. Kombinasi substrat-inokulum yang mampu menghasilkan produktifitas biogas terbesar (1623,70 ml/l.h) dengan efisiensi metan tertinggi (27,99 persen) adalah 25 vs 500 gram. Rendahnya efektifitas proses dipengaruhi oleh faktor lingkungan seperti pH, nisbah C/N, senyawa inhibitor (lignin) serta kondisi anaerob.

B. Saran

Proses dapat diperbaiki dengan penangangan awal bahan secara fisis atau kimiai untuk memudahkan proses pencernaan substrat. Nisbah C/N dapat diperbaiki dengan penambahan bahan kaya nitrogen. Kondisi anaerobik juga perlu diperhatikan, terutama pada saat feeding dan pengadukan. Hal ini dimaksudkan untuk mencegah masuknya oksigen dari luar yang dapat menghambat aktifitas bakteri anaerobik.

DAFTAR PUSTAKA

