PENGARUH TEMPAT TUMBUH, JENIS DAN DIAMETER BATANG TERHADAP PRODUKTIVITAS POHON PENGHASIL BIJI TENGKAWANG

The Effect of Growth Site, Species, and Stem Diameter of Tengkawang Trees on Seed Productivity

Oleh/By:
Ina Winarni, E. S. Sumadiwangsa & Dendy Setyawan

ABSTRACT

Tengkawang is one of the leading commodity of non timber forest products in West Kalimantan. Tengkawang commodity is sold in the form of dry seed mainly for export. Meanwhile, the processed products derived from tengkawang such as tengkawang oil are sent back to Indonesia as imported finished and half-finished items. This investigation was mainly aimed at assessing the effect of growth site, species, and diameter of tengkawang producing trees on the seed productivity. The target was to procure reliable data/information on productivity and technical growth increment which can be further useful as a guidance in developing tengkawang-seed busines.

The result revealed that the highest productivity of tengkawang seeds indicated by the trees with a diameter in the range of 60 –90 cm. The results revealed that, the seed production was 555,7 kg per tree per harvest. The highest seed productivity was indicated by Shorea stenoptera Burk trees growing in Sanggau, i.e. 620,9 kg per trees per harvest. It is suggested that based on the honestly significant difference’s range test, the promising development of tengkawang cultivation in rank by species from the most until the least was consecutively Shorea stenoptera Burk, Shorea stenoptera Burk Forma Ardikusuma, and Shorea palembanica Miq. respectively. All species grow in Sintang and Sanggau.

Keywords: Growth site, species, diameter, tengkawang seed, productivity.

ABSTRAK

Tengkawang merupakan komoditi andalan dari Kalimantan Barat yang dijual dalam bentuk biji kering yang umumnya untuk ekspor dan sebagian hasil olahannya diimpor kembali oleh Indonesia dalam bentuk bahan jadi dan setengah jadi untuk aneka industri. Penelitian ini bertujuan untuk mengetahui pengaruh lokasi (tempat tumbuh), jenis dan diameter terhadap produktivitas pohon penghasil biji tengkawang, sedangkan sasarannya adalah menghasilkan informasi produktivitas dan daur teknis yang dapat dipakai sebagai acuan pengembangan pengusahaan biji tengkawang.

Penelitian menunjukkan bahwa produksi tengkawang tertinggi dihasilkan dari pohon yang berdiameter 60-90 cm yang menghasilkan biji sebanyak 555,7 kg/pohon/panen. Produktivitas rata-rata tertinggi dihasilkan dari jenis Shorea stenoptera Burk di Sanggau yang menghasilkan biji sebanyak 620,9 kg/pohon/panen. Beberapa saran untuk pengembangan budidaya tengkawang adalah

Kata kunci: Tempat tumbuh, jenis, diameter, biji tengkawang, produktivitas.

I. PENDAHULUAN

A. Latar Belakang

Di Indonesia tumbuh aneka pohon yang selama daur hidupnya menghasilkan kayu dan juga komoditi Hasil Hutan Bukan Kayu (HHBK). Jenis HHBK yang diperoleh banyak macamnya, antara lain berupa: biji (tengkawang, kemiri, pala pinang, dll), resin dan getah (damar, kopal, kemenyan, kamper, jelutung, perca dan hangkang), kulit kayu (kayu manis, lawang, sintok, bakau-bakau dan akasia), daun (perca, cengkeh, kayu putih, gambir, ekaliptus, dll), dan bunga (kenanga, ylang-ylang dan cengkeh).

Pemanfaatan lemak tengkawang saat ini sebagian besar hanya dalam industri coklat, yang ditujukan untuk meningkatkan titik leleh lemak coklat terutama lemak coklat yang berasal dari Amerika Latin. Minyak tengkawang dalam industri makanan dikenal dengan nama *cacao butter substitute*, yang digunakan sebagai pengganti minyak coklat. Pada industri farmasi dan kosmetika dikenal dengan nama oleum shorea yang dapat digunakan sebagai bahan baku kosmetik dan obat-obatan. Minyak tengkawang juga cocok digunakan pada industri margarine, coklat, sabun, lipstik dan obat-obatan; karena memiliki keistimewaan, yaitu titik lelehnya yang tinggi berkisar antara 34 – 39 ºC. Selain untuk pangan, prospek yang baik dari minyak tengkawang yang dikenal dengan nama vegetable thallow atau illip nut, dapat dipakai sebagai minyak pelumas mesin, pembuatan sabun, peti

Sebagai penghuni dari habitat hutan hujan tropis, biota ini perlu dikaji keberadaan dan produktivitas jenisnya untuk mengetahui lebih dekat nilai ekonomis dari hasil hutan berupa kayu dan bukan kayunya (biji tengkawang) sehingga memungkinkan untuk mengambil langkah atau kebijakan mengenai jenis ini dikemudian hari.

Tulisan ini menyajikan hasil penelitian pengaruh lokasi, jenis dan diameter terhadap produktivitas pohon penghasil biji tengkawang yang terdapat di Kabupaten Sintang dan Kabupaten Sanggau, Kalimantan Barat.

B. Tujuan dan Sasaran

Penelitian ini bertujuan untuk mengetahui pengaruh lokasi (tempat tumbuh), jenis dan diameter terhadap produktivitas pohon penghasil biji tengkawang, sedangkan sasarannya adalah menghasilkan informasi produktivitas yang dapat dipakai sebagai acuan pengembangan pengusahaan biji tengkawang terutama di lokasi terpilih.

II. BAHAN DAN METODE

A. Lokasi Penelitian

Penelitian ini dilaksanakan dalam areal hutan rakyat di Kabupaten Sintang dan Kabupaten Sanggau, Propinsi Kalimantan Barat.

B. Bahan dan Alat

Bahan yang diperlukan dalam penelitian ini meliputi contoh uji pohon dan biji tengkawang sedangkan peralatan yang dipergunakan adalah pita ukur, stop watch, timbangan, plastik pembungkus dan karung.

C. Metode Penelitian

Jenis yang diteliti adalah Shorea stenoptera Burk. (tengkawang tungkul), Shorea palembanica Miq. (tengkawang majau), dan Shorea Stenoptera Burk Forma Ardikusuma (tengkawang tungkul forma Ardikusuma) yang dianggap masyarakat petani tengkawang sebagai jenis-jenis yang paling dominan dan menguntungkan untuk dikembangkan. Selanjutnya memilih 5 pohon yang telah berproduksi dari tiap-tiap jenis dengan selang diameter 30 - 39 cm, 40 - 49 cm, 50 - 59 cm dan 60 - 69 cm. Pengukuran dilakukan dengan cara menimbang hasil panen biji tengkawang basah selama jangka waktu pemanenan.

Tabulasi data dibuat dengan memperhatikan faktor-faktor : dua lokasi penelitian, tiga jenis pohon penghasil biji tengkawang dan empat ukuran diameter pada masing-masing jenis penghasil biji tengkawang. Selanjutnya dilakukan evaluasi data dengan rancangan
acak faktorial untuk masing-masing jenis evaluasi. Supaya diperoleh data yang lebih representatif, setiap satuan pengukuran diulang sebanyak dua kali. Jika terdapat faktor-faktor yang nyata dari hasil analisis keragaman, evaluasi data akan dilanjutkan dengan uji beda nyata jarak, terutama untuk faktor-faktor yang sifatnya kualitatif (jenis, lokasi). Untuk faktor yang kuantitatif (diameter pohon), evaluasi dilakukan dengan regresi berganda (linear, kuadratik).

III. HASIL DAN PEMBAHASAN

A. Dimensi Biji Tengkawang

Masyarakat sekitar hutan secara beramai-ramai memungut biji tengkawang pada bulan Desember, Januari, Februari dan diperkirakan berakhir di bulan Maret. Pemungutan dilakukan dengan cara mengambil biji yang berjatuhan dan meninggalkan biji yang sudah mulai berkecambah. Pemungutan dilakukan di pagi dan sore hari, kemudian mengumpulkannya di rumah pemilik lahan untuk dilakukan penimbangan, selanjutnya hasil pungutan dibagi dua antara petani pemungut dengan pemilik lahan.

Ketiga jenis tengkawang yang memiliki dimensi (ukuran) biji yang berbeda-beda (Tabel 1), dimana dimensi biji dari jenis Shorea stenoptera Burk atau tengkawang tungkul lebih besar dibandingkan jenis yang lain dengan panjang dapat mencapai 75 mm, dan lebar 47 mm (keliling buah 140 mm) dengan bentuk buah oval. Sedangkan dimensi biji terkecil adalah jenis Shorea palembanica Miq. dengan panjang 35 mm dan lebar 25 mm.

Tabel 1. Dimensi biji tengkawang

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis tengkawang (Kind of tengkawang)</th>
<th>Panjang (mm) (Length; mm)</th>
<th>Lebar (mm) (Width; mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>S. stenoptera Burk.</td>
<td>75</td>
<td>47</td>
</tr>
<tr>
<td>2.</td>
<td>S. palembanica Miq.</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>3.</td>
<td>S. stenoptera Burk Forma Ardikusuma</td>
<td>42</td>
<td>25</td>
</tr>
</tbody>
</table>

B. Produktivitas Pohon Tengkawang

Pohon tengkawang yang baru belajar berbuah akan menghasilkan 50 – 100 kg biji tengkawang kering. Hasil rata-rata pohon tengkawang pada panen raya berkisar antara 250 – 400 kg biji tengkawang kering. Pohon tengkawang pada tahun-tahun diluar panen raya hanya menghasilkan sekitar 50 – 100 kg biji (Sumadiwangsa, 2001). Seorang pemungut di Kalimantan Barat menyatakan bahwa pohon yang sangat besar dapat menghasilkan sekitar 800 kg biji tengkawang.
Data produktivitas pohon tengkawang hasil penelitian di dua lokasi (Sintang dan Sanggau) dapat dilihat pada Tabel 2 dan 3. Pada Tabel 2 dapat dilihat bahwa produksi biji tengkawang tertinggi adalah jenis *Shorea stenoptera* Burk. atau tengkawang tungkul dibandingkan dengan jenis tengkawang lainnya sebesar 771 kg. Tetapi apabila dilihat per jenis pohon tengkawang, maka diameter terbesar (60 – 69 cm) menghasilkan produksi biji tengkawang terbesar pula (*Shorea stenoptera* Burk = 771 kg; *Shorea palembanica* Miq. = 390 kg; dan *Shorea stenoptera* Burk Forma Ardukusuma = 720 kg).

Tabel 2. Produktivitas pohon penghasil tengkawang di Kabupaten Sintang

<table>
<thead>
<tr>
<th>Jenis (species), B11</th>
<th>Sintang (location) (kg), A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø1 C111</td>
<td>Ø2 C112</td>
</tr>
<tr>
<td>473</td>
<td>523</td>
</tr>
<tr>
<td>538</td>
<td>477</td>
</tr>
<tr>
<td>514</td>
<td>560</td>
</tr>
<tr>
<td>442</td>
<td>492</td>
</tr>
<tr>
<td>382</td>
<td>513</td>
</tr>
</tbody>
</table>

Keterangan (Remarks) : Jenis (species) 1 = *Shorea stenoptera* Burk ; Jenis (species) 2 = *Shorea palembanica* Miq; Jenis (species) 3 = *Shorea stenoptera* Burk FA; Ø1 = 30 – 39 cm ; Ø2 = 40 – 49 cm ; Ø3 = 50 – 59 cm ; Ø4 = 60 – 69 cm.

Pada Tabel 3 terlihat bahwa produksi biji tengkawang tertinggi adalah jenis *Shorea stenoptera* Burk. atau tengkawang tungkul dibandingkan dengan jenis tengkawang lainnya sebesar 840 kg. Tetapi apabila dilihat per jenis pohon tengkawang, maka diameter terbesar (60 – 69 cm) menghasilkan produksi biji tengkawang terbesar pula (*Shorea stenoptera* Burk = 840 kg; *Shorea palembanica* Miq. = 405 kg; dan *Shorea stenoptera* Burk FA = 708 kg).

Berdasarkan hasil analisis sidik ragam produktivitas tengkawang pada Tabel 4 diketahui bahwa perbedaan jenis pohon dan diameter pohon berpengaruh sangat nyata terhadap produktivitas pohon, sedangkan lokasi dan interaksi antara lokasi dengan jenis pohon berpengaruh nyata.

Tabel 3. Produktivitas pohon tengkawang di Kabupaten Sanggau

<table>
<thead>
<tr>
<th>Jenis (species), B21</th>
<th>Sanggau (location), kg (A2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø1 C211</td>
<td>Ø2 C212</td>
</tr>
<tr>
<td>485</td>
<td>560</td>
</tr>
<tr>
<td>503</td>
<td>730</td>
</tr>
<tr>
<td>393</td>
<td>440</td>
</tr>
<tr>
<td>527</td>
<td>610</td>
</tr>
<tr>
<td>575</td>
<td>490</td>
</tr>
</tbody>
</table>

Keterangan (Remarks) : Jenis (species) 1 = *Shorea stenoptera* Burk ; Jenis (species) 2 = *Shorea palembanica* Miq; Jenis (species) 3 = *Shorea stenoptera* Burk FA; Ø1 = 30 – 39 cm ; Ø2 = 40 – 49 cm ; Ø3 = 50 – 59 cm ; Ø4 = 60 – 69 cm.
Tabel 4. Ringkasan analisa sidik ragam produktivitas tengkawang

Table 4. Summary of the analysis of variance of tengkawang productivity

<table>
<thead>
<tr>
<th>Sumber (Source)</th>
<th>Db (df)</th>
<th>Jumlah kuadrat (sum of square)</th>
<th>Kuadrat tengah (mean square)</th>
<th>Peluang (probability) Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, lokasi (location)</td>
<td>1</td>
<td>20.098,408</td>
<td>20.098,408</td>
<td>0,0431*</td>
</tr>
<tr>
<td>B, jenis (species)</td>
<td>2</td>
<td>2.221.524,317</td>
<td>1.110.762,158</td>
<td>0,0001**</td>
</tr>
<tr>
<td>A*B</td>
<td>2</td>
<td>45.497,717</td>
<td>22.748,858</td>
<td>0,0107*</td>
</tr>
<tr>
<td>C, diameter</td>
<td>3</td>
<td>561.677,625</td>
<td>187.225,875</td>
<td>0,0001**</td>
</tr>
<tr>
<td>A*C</td>
<td>3</td>
<td>9.168,625</td>
<td>3.056,208</td>
<td>0,5917</td>
</tr>
<tr>
<td>B*C</td>
<td>6</td>
<td>37.343,950</td>
<td>6.223,992</td>
<td>0,2640</td>
</tr>
<tr>
<td>ABC</td>
<td>6</td>
<td>15.093,350</td>
<td>2.515,558</td>
<td>0,7873</td>
</tr>
<tr>
<td>Model</td>
<td>23</td>
<td>2.910.403,992</td>
<td>126.539,304</td>
<td>0,0001</td>
</tr>
<tr>
<td>Galat (error)</td>
<td>96</td>
<td>45.118,800</td>
<td>4.782,487</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>119</td>
<td>33.692.522,792</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan (Remarks): * = Berbeda nyata pada taraf 5% (significant different at 5% level); ** = Sangat berbeda nyata pada taraf 1% (highly significant different at 1% level); \(R^2 = 0.8637 \)

Pada dua lokasi penelitian (Sintang dan Sanggau), produksi rata-rata tertinggi diketahui dari selang diameter batang tertinggi (60-69 cm), dan seterusnya sampai pada selang diameter terendah dalam pengamatan (30-39 cm), seperti tertera pada Tabel 5. Pohon tengkawang sampai dengan diameter 60-69 cm masih menunjukan produktivitas yang tinggi, sementara karateristik penurunan produktivitas tidak dapat terdeteksi sampai diameter berapa, karena di lokasi penelitian sudah sulit mencari pohon tengkawang dengan diameter di atas 70 cm karena telah banyak ditebang untuk dimanfaatkan kayunya.

Tabel 5. Tingkat rata-rata produktivitas tengkawang pada selang diameter berdasarkan uji jarak beda nyata jujur

Table 5. Average level in the productivity of tengkawang at particular diameter range based on the honestly significant difference test

<table>
<thead>
<tr>
<th>Tingkat (Level)</th>
<th>Diameter (Diameter) cm</th>
<th>Produksi rata-rata (Average production), kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertama (first)</td>
<td>60-69</td>
<td>555,77</td>
</tr>
<tr>
<td>Kedua (second)</td>
<td>50-59</td>
<td>497,57</td>
</tr>
<tr>
<td>Ketiga (third)</td>
<td>40-49</td>
<td>419,87</td>
</tr>
<tr>
<td>Keempat (fourth)</td>
<td>30-39</td>
<td>378,97</td>
</tr>
</tbody>
</table>

Keterangan (Remark): \(BNJ_{D,0.05} \) (range test of honesty significant different) = 46,687
Produktivitas pohon penghasil biji tengkawang tertinggi diketahui dari jenis tengkawang tungkul di lokasi Sanggau (A2; B1), diikuti oleh jenis tengkawang tungkul dan tengkawang tungkul FA di lokasi Sintang, seperti pada Tabel 6.

Tabel 6. Tingkat rata-rata produktivitas pohon tengkawang pada tiap-tiap jenis di lokasi Sintang dan Sanggau berdasarkan uji jarak BNJ

<table>
<thead>
<tr>
<th>Sintang (A1)</th>
<th>Sanggau (A2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenis (Species)</td>
<td>Produksi (Production), kg</td>
</tr>
<tr>
<td>B11</td>
<td>549,40</td>
</tr>
<tr>
<td>B12</td>
<td>258,30</td>
</tr>
<tr>
<td>B13</td>
<td>542,60</td>
</tr>
</tbody>
</table>

Keterangan (Remarks): BNJ_{0.05} (range test of honesty significant different) = 89,319
B11/B21 = Shorea stenoptera Burk; B12/B22 = Shorea palembanica Miq.; B13/B23 = Shorea stenoptera Burk Forma Ardikusuma

C. Hubungan Jenis Pohon dengan Diameter Pohon Tengkawang

Hubungan antara jenis dengan diameter pohon pada dua lokasi Sanggau dan Sintang terhadap produktivitas pohon penghasil biji tengkawang adalah garis lurus (liniear) dengan laju kemirangan positif (Gambar 1 dan 2), dengan masing-masing persamaan regresi sebagai berikut (Tabel 7 dan 8).

Tabel 7. Persamaan regresi hubungan antara diameter pohon terhadap produktivitas pohon penghasil biji tengkawang di Sintang

<table>
<thead>
<tr>
<th>Jenis (Species)</th>
<th>Persamaan regresi (Regression equation)</th>
<th>R^2 (r-square)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorea stenoptera Burk.</td>
<td>Y1 = 258,934 + 5,868 X</td>
<td>0,5289</td>
</tr>
<tr>
<td>Shorea palembanica Miq.</td>
<td>Y2 = 88,365 + 3,430 X</td>
<td>0,4245</td>
</tr>
<tr>
<td>Shorea stenoptera Burk FA</td>
<td>Y3 = 143,902 + 8,004 X</td>
<td>0,8185</td>
</tr>
</tbody>
</table>

Keterangan (Remarks): R^2 = koefisien determinasi (Determination coefficient)
Keterangan (Remarks) :

- Y1 = Shorea stenoptera Burk
- Y2 = Shorea palembanica Miq.
- Y3 = Shorea stenoptera FA

Gambar 1. Grafik hubungan antara diameter pohon dan produktivitas pohon penghasil biji tengkawang di Sintang

Figure 1. Curves revealing the relationship between diameter (x) and productivity of tengkawang (y) at Sintang

Tabel 8. Persamaan regresi hubungan antara diameter pohon dan produktivitas pohon penghasil biji tengkawang di Sanggau

Table 8. Regression equations featuring the relationship between diameter (x) and productivity of tengkawang (y) at Sanggau

<table>
<thead>
<tr>
<th>Jenis (Species)</th>
<th>Persamaan regresi (Regression equation)</th>
<th>R² (r-square)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorea stenoptera Burk.</td>
<td>Y1 = 207,278 + 8,356 X</td>
<td>0,5687</td>
</tr>
<tr>
<td>Shorea palembanica Miq.</td>
<td>Y2 = 74,758 + 4,316 X</td>
<td>0,4589</td>
</tr>
<tr>
<td>Shorea stenoptera Burk FA</td>
<td>Y3 = 181,459 + 6,818 X</td>
<td>0,4506</td>
</tr>
</tbody>
</table>

Keterangan (Remarks) : R² = koefisien determinasi (Determination coefficient)
Gambar 2. Grafik hubungan antara diameter pohon dan produktivitas pohon penghasil biji tengkawang di Sanggau

Figure 2. Curves revealing the relationship between diameter (x) and productivity of tengkawang (y) at Sanggau

Persamaan di atas (Tabel 7 dan 8) memperlihatkan semakin besar diameter pohon sampai diameter yang diujicobakan (60–69 cm) pada semua jenis tengkawang pada lokasi percobaan di Sintang dan Sanggau, akan menghasilkan biji yang semakin banyak dalam satuan berat (kg). Hasil ini mirip dengan penelitian yang dilakukan oleh Zulnely et al. (1998), yang menyatakan terdapat pengaruh yang nyata secara positif antara lingkaran pohon (diameter) dan lebar torenan terhadap hasil getah jelutung. Hal ini kemungkinan disebabkan semakin lebar diameter, maka xylem sebagai pengangkut zat hara dan air dari tanah menjadi lebih besar, sehingga semakin banyak zat hara dan air yang diangkut. Hal ini berakibat kuantitas fotosintesis semakin tinggi yang menyebabkan pembentukan bunga dan buah semakin banyak (Haygreen dan Bowyer, 1996).

IV. KESIMPULAN DAN SARAN

A. Kesimpulan

Dari hasil penelitian pengaruh lokasi, jenis, diameter terhadap produktivitas pohon penghasil biji tengkawang dapat disimpulkan sebagai berikut:

1. Produksi biji tengkawang tertinggi dihasilkan dari pohon yang berdiameter 60-69 cm yang menghasilkan biji sebanyak 555,7 kg/pohon/panen.
2. Produktivitas rata-rata tertinggi dihasilkan dari jenis *Shorea stenoptera* Burk di Sanggau yang menghasilkan biji sebanyak 620,9 kg/pohon/panen.
3. Hubungan antara jenis dan diameter apabila dilihat dari regresi yang dihasilkan, diketahui bahwa jenis *Shorea stenoptera* Burk FA yang berasal dari Sintang memiliki persamaan regresi $Y = 143,902 + 8,004 D$ dengan nilai R^2 terbesar = 81,85%.

4. Pada diameter terbesar (60-69 cm) ternyata tengkawang masih menghasilkan produksi biji tertinggi.

B. Saran

Pengembangan (budidaya) pohon penghasil biji tengkawang di Kabupaten Sintang dan Kabupaten Sanggau, disarankan berdasarkan prioritas hasil uji jarak BNJ, berturut-turut adalah:

DAFTAR PUSTAKA

Lampiran 1. Produktivitas pohon penghasil tengkawang di lokasi kabupaten Sintang

Appendix 1. Productivity of tengkawang trees in the location of Sintang regency

<table>
<thead>
<tr>
<th>Lokasi Sintang (Sintang location) (kg), A1</th>
<th>Jenis (species) 1, B11</th>
<th>Jenis (species) 2, B12</th>
<th>Jenis (species) 3, B13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø1</td>
<td>C111</td>
<td>Ø1</td>
<td>C131</td>
</tr>
<tr>
<td>Ø2</td>
<td>C112</td>
<td>Ø2</td>
<td>C132</td>
</tr>
<tr>
<td>Ø3</td>
<td>C113</td>
<td>Ø3</td>
<td>C133</td>
</tr>
<tr>
<td>Ø4</td>
<td>C114</td>
<td>Ø4</td>
<td>C134</td>
</tr>
<tr>
<td>473</td>
<td>523</td>
<td>180</td>
<td>361</td>
</tr>
<tr>
<td>538</td>
<td>580</td>
<td>230</td>
<td>282</td>
</tr>
<tr>
<td>514</td>
<td>414</td>
<td>210</td>
<td>261</td>
</tr>
<tr>
<td>442</td>
<td>630</td>
<td>240</td>
<td>257</td>
</tr>
<tr>
<td>382</td>
<td>642</td>
<td>170</td>
<td>190</td>
</tr>
</tbody>
</table>

Keterangan (Remarks): Jenis (species) 1 = *Shorea stenoptera* Burk.; Jenis (species) 2 = *Shorea palembanica* Miq.; Jenis (species) 3 = *Shorea stenoptera* Burk Forma Ardikusuma; Ø1 = 30 – 39 cm; Ø2 = 40 – 49 cm; Ø3 = 50 – 59 cm; Ø4 = 60 – 69 cm

Lampiran 2. Produktivitas pohon tengkawang di lokasi kabupaten Sanggau

Appendix 2. Productivity of tengkawang trees in the location of Sanggau regency

<table>
<thead>
<tr>
<th>Lokasi Sanggau (Sanggau location), kg (A2)</th>
<th>Jenis (species) 1, (B21)</th>
<th>Jenis (species) 2, (B22)</th>
<th>Jenis (species) 3, (B23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø1</td>
<td>C211</td>
<td>Ø1</td>
<td>C231</td>
</tr>
<tr>
<td>Ø2</td>
<td>C212</td>
<td>Ø2</td>
<td>C232</td>
</tr>
<tr>
<td>Ø3</td>
<td>C213</td>
<td>Ø3</td>
<td>C233</td>
</tr>
<tr>
<td>Ø4</td>
<td>C214</td>
<td>Ø4</td>
<td>C234</td>
</tr>
<tr>
<td>485</td>
<td>560</td>
<td>175</td>
<td>253</td>
</tr>
<tr>
<td>503</td>
<td>681</td>
<td>210</td>
<td>360</td>
</tr>
<tr>
<td>393</td>
<td>667</td>
<td>280</td>
<td>327</td>
</tr>
<tr>
<td>527</td>
<td>812</td>
<td>340</td>
<td>363</td>
</tr>
<tr>
<td>575</td>
<td>714</td>
<td>180</td>
<td>298</td>
</tr>
</tbody>
</table>

Keterangan (Remarks): Jenis (species) 1 = *Shorea stenoptera* Burk.; Jenis (species) 2 = *Shorea palembanica* Miq.; Jenis (species) 3 = *Shorea stenoptera* Burk Forma Ardikusuma; Ø1 = 30 – 39 cm; Ø2 = 40 – 49 cm; Ø3 = 50 – 59 cm; Ø4 = 60 – 69 cm

33