ANALISIS PRODUKTIVITAS, BIAYA OPERASI DAN PAMADATAN TANAH PADA PENYARADAN TRAKTOR VALMET FORWARDER 890.3 DI AREAL HTI PROVINSI RIAU
(Productivity, Operational Cost and Soil Compaction Analysis on The Use of Valmet Forwarder Tractor in Log Skidding at Plantation Forest in Riau Province)

Oleh / By:
Zakaria Basari¹ & Dulsalam¹
¹ Pusat Litbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan Jl. Gunung Batu No. 5, Bogor 16610, Tlp. 0251-8633378, Fax 0251-8633413 E-mail: zakariabasari@yahoo.com

Diterima 6 Mei 2011, disetujui 8 Desember 2011

ABSTRACT
The analysis of wood extraction using a Valmet forwarder tractor was carried out at industrial plantation forest PT. RAPP in Riau Province. The objective was to investigate productivity, operational cost, and soil compaction.

The results showed that extraction productivity was 22.43 m³/hour. Average cost extraction average was Rp 20.935,-/m³. Soil compaction was observed to be minor.

Keywords: Productivity, operation cost, valmet forwarder

ABSTRAK
Penelitian penyaradan kayu di hutan tanaman industri (HTT) dengan menggunakan traktor Valmet forwarder di lakukan di Perusahaan PT. RAPP, Provinsi Riau. Tujuannya adalah untuk memperoleh informasi tentang produktivitas, mekanisme kerja, biaya operasi, dan pemadatan tanah hutan.

Hasil penelitian menunjukan bahwa produktivitas kerja penyaradan Valmet forwarder rata - rata 22,43 m³/jam, biaya operasi rata - rata Rp 20.935,-/m³ dan pemadatan tanah sangat ringan.

Kata kunci: Produktivitas, biaya operasi, valmet forwarder

I. PENDAHULUAN

Pada kegiatan pemanenan hutan alam atau hutan tanaman industri (HTT) kegiatan penyaradan memegang peranan penting, karena : a. Kayu yang berada di dalam hutan dapat segera dikeluarkan
secara tepat waktu atau sesuai dengan jadwal yang sudah ditentukan. b. Mengurangi risiko kayu dari serangan rayap, sehingga nilai ekonomi dapat dipertahankan dengan harga tinggi, c. Mempertahankan kegiatan penanaman bibit pohon pada areal bekas tebangan karena sudah bersih dari batang kayu yang berceracah di permukaan lantai hutan.

Dalam pengelolaan hutan produksi oleh pengusahaan HPH dan HTI di lapangan banyak melibatkan alat - alat berat. Ketiga aspek utama di atas masih jarang diperhatikan. Oleh karena itu perlu dilakukan penelitian, khususnya tentang penjarahan yang menggunakan traktor Valmet forwarder.

Tujuan penelitian adalah untuk mengetahui produktivitas, biaya produksi serta dampak penjarahan terhadap permukaan tanah hutan akibat pergerakan alat Valmet forwarder di hutan tanaman.

II. METODE PENELITIAN

A. Tempat dan Waktu

Gambar 1. Konstruksi Valmet forwarder 890.3
Figure 1. Construction of Valmet forwarder 890.3

Keterangan (Remarks):
1. Kabin (Cabin)
2. Bak gandengan (Trailer)
3. Tungkai kran (Crane hidrolic)
4. Penjepit muatan (Grapple)
B. Alat yang Diteliti

Alat yang di teliti adalah jenis alat traktor Valmet forwarder dengan spesifikasi sebagai berikut:
1. Merek (Trade mark): Valmet forwarder 890.3
2. Buatan (Made in): United States of America
3. Bahan bakar (Fuel): Diesel fuel
4. Panjang tunggal penjetip (Crank hydraulic length): 9 m
5. Kapasitas optimum (Optimum capacity): 20 ton
6. Panjang kabin (The length of cabin): 2 m
7. Lebar kabin (Width of cabin): 2 m
8. Tinggi kabin (Height of cabin): 2 m
9. Panjang rangka bak (Length of chassis): 4 m
10. Lebar rangka bak (Width of chassis): 3 m
11. Tinggi rangka bak (Height of chassis): 2 m
Sumber (Source): Anonim, (2010)

C. Pengumpulan Data

Data yang dikumpulkan adalah data primer dan data sekunder. Data primer adalah data yang diperoleh dengan cara diambil langsung dari lapangan. Sedang data sekunder diperoleh dengan hasil wawancara dengan para pekerja di lapangan dan pengutipan dari kantor perusahaan.

Pengumpulan data primer meliputi beberapa kegiatan berikut:
1. Mencatat waktu kerja dan waktu istirahat (dalam detik) penyaranad
2. Mencatat dan mengukur volume kayu yang disarad
3. Mencatat dan mengukur panjang serta lebar jalan sarad
4. Mencatat dan mengukur panjang serta lebar permukaan lantai tanah hutan yang tertekan roda ban alat sarad
5. Mengukur berat tanah basah dan kering tanur dari 15 contoh tanah ukuran 10 cm x 10 cm x 30 cm di 15 titik jalan sarad.

Data sekunder yang dikumpulkan dalam penelitian ini meliputi beberapa kegiatan berikut:
1. Mencatat hasil wawancara dengan operator dan pembantu tentang perolehan upah kerja dan premi pada setiap akhir bulan
2. Mencatat dan mengutip data hasil wawancara tentang harga alat yang baru dan bekas di kantor cabang PT. RAPP
3. Mencatat dan mengutip data pengeluaran BBM, oli dan pelumas untuk mesin penyaranad setiap bulan di bengkel alat (workshop)

D. Pengolahan Data

 \[V = \frac{P}{T} \] \hspace{1cm} (1)
 di mana:
 \[P = \text{Produktifitas (m}^3/\text{jam}), V = \text{Volume (m}^3), \]
 \[T = \text{Waktu kerja efektif (jam)} \]

 \[V_b = P \times L \times t \times B_d \] \hspace{1cm} (2)
 di mana:
 \[V_b = \text{Volume kayu dalam bak (m}^3), P = \text{Panjang rata-rata kayu dalam bak (m)}, L = \text{Lebar kayu dalam bak (m)}, \]
 \[t = \text{tinggi kayu dalam bak (m)}, B_d = \text{Berat jenis kayu Acacia mangium (0,4)} \]

 \[V_T = P \times L \times t \] \hspace{1cm} (3)
 di mana:
 \[V_T = \text{Volume tanah yang tertekan (m}^3), L = \text{lebar tanah yang terganggu (m)}, t = \text{tinggi tanah yang terganggu (m)} \]

 \[Y_d = (W_2 - W_1) : V \] \hspace{1cm} (4)
 di mana:
 \[Y_d = \text{Kerapatan massa tanah kering (g/cm}^3), W_2-W_1 = \text{Berat contoh tanah basah (g/cm}^3), V = \text{Volume contoh tanah (cm}^3) \]

5. Porositas tanah dihitung dengan rumus:
 \[P = (2,65 - y_d) : 2,65 \times 100\% \] \hspace{1cm} (5)
 di mana:
 \[P = \text{Porositas tanah (%),} y_d = \text{Kerapatan masa tanah kering (g/cm}^3), 2,65 = \text{berat jenis tanah umum, kecuali pasir} \]

6. Menghitung biaya operasi meliputi biaya tetap dan tidak tetap
 Biaya tetap terdiri dari biaya penyusutan dihitung dengan rumus konsultan United Tractor

\[
D = \frac{M \cdot R}{N \cdot t} \quad (6)
\]

di mana:
\[
D = \text{Biaya penyusutan (Rp/jam)}, \quad M = \text{Harga alat (Rp),} \quad R = \text{Nilai alat bekas (Rp),} \quad N = \text{Waktu kerja ekonomis alat (5 thn),} \quad t = \text{Waktu kerja alat dalam satu tahun (1.000 jam)}
\]

\[
\text{Biaya bunga modal} = \frac{\text{Harga alat (Rp) x 0,6 x 0,18}}{1.000/jam} \quad (7)
\]

\[
\text{Biaya pajak} = \frac{\text{Harga alat (Rp) x 0,6 x 0,02}}{1.000/jam} \quad (8)
\]

\[
\text{Biaya asuransi} = \frac{\text{Harga alat (Rp) x 0,6 x 0,03}}{1.000/jam} \quad (9)
\]

Biaya tetap dihitung dengan rumus (Anonim, 1984):

\[
BT = BP + BB + Pj + As \quad (10)
\]

di mana:
\[
BT = \text{Biaya tetap (Rp/jam)}, \quad BP = \text{Biaya penyusutan (Rp/jam)}, \quad BB = \text{Biaya bunga bank (Rp/jam)}, \quad Pj = \text{Pajak (Rp/jam)}, \quad As = \text{Asuransi (Rp/jam)}
\]

\[
BT = BP + BB + Pj + As \quad (12)
\]

di mana:
\[
BT = \text{Biaya tetap (Rp/jam)}, \quad BP = \text{Biaya penyusutan (Rp/jam)}, \quad BB = \text{Biaya bunga bank (Rp/jam)}, \quad Pj = \text{Pajak (Rp/jam)}, \quad As = \text{Asuransi (Rp/jam)}
\]

E. Analisa Data

Untuk menganalisis hubungan antara jarak penyaradan dengan produktifitas kerja digunakan analisis regresi sederhana dengan rumus persamaan sebagai berikut (Steel, R.G.D, dan J.H. Torrie, 1993):

\[
Y_1 = b_0 + b_1 (X_1) \quad (13)
\]

di mana:
\[
Y_1 = \text{Fungsi penduga (Jarak sarad dalam satuan hm),} \quad b_0 \quad \text{dan} \quad b_1 = \text{Tetapan regesi (Nilai konstanta),} \quad X_1 = \text{Peubah bebas (Produktivitas dalam satuan m³/jam)}
\]

Bahwa jika hasil analisis menunjukkan nilai F dihitung > F0.05, maka diputuskan terima H1 : \(b_1 \neq 0 \) artinya bahwa jarak penyaradan tidak berpengaruh nyata terhadap produktivitas.

III. HASIL DAN PEMBAHASAN

A. Produktivitas Penyaradan

Produktivitas alat dihitung mulai saat mesin dihidupkan dimana alat dalam keadaan kosong, kemudian alat berjalan menuju tumpukan kayu (stacking) yang berada di tempat tebangan, melakukan pemuatan dan selanjutnya melakukan penyaradan kayu ke TPN yang berada di pinggir jalan. Ukuran batang kayu yang disarad adalah panjang rata - rata 4 m, diameter berkisar 10 - 30 cm. Teknik pengukuran volume kayu yang berada dalam bak trailer traktor valmet forwarder dilakukan dengan mengukur isi bak yaitu dengan cara mengukur panjang x lebar x tinggi tumpukan kayu x 0,5 sebagai faktor koreksi. Untuk mengetahui produktivitas dapat dilihat pada Tabel 1 berikut.
<table>
<thead>
<tr>
<th>Nomor penyaradan/ Skidding Number</th>
<th>Panjang jalan/ Road length (hm)</th>
<th>Volume kayu dalam bak/ Wood volume in carriage (m³)</th>
<th>Penyaranan per trip/ Skidding per trip (jam/hours)</th>
<th>Produktifitas penyaradan / Productivity of skidding (m²/jam/ m³/hour)</th>
<th>Produktifitas penyaradan / Productivity of skidding (m²/hm/jam/ m³/hm/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>12</td>
<td>0.13</td>
<td>92.31</td>
<td>46.15</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>12</td>
<td>0.14</td>
<td>85.71</td>
<td>8.57</td>
</tr>
<tr>
<td>3</td>
<td>0.23</td>
<td>12</td>
<td>0.16</td>
<td>75.00</td>
<td>17.25</td>
</tr>
<tr>
<td>4</td>
<td>0.33</td>
<td>12</td>
<td>0.28</td>
<td>42.86</td>
<td>14.14</td>
</tr>
<tr>
<td>5</td>
<td>0.43</td>
<td>12</td>
<td>0.3</td>
<td>40.00</td>
<td>17.2</td>
</tr>
<tr>
<td>6</td>
<td>0.58</td>
<td>12</td>
<td>0.3</td>
<td>40.00</td>
<td>23.2</td>
</tr>
<tr>
<td>7</td>
<td>0.73</td>
<td>12</td>
<td>0.33</td>
<td>36.36</td>
<td>26.54</td>
</tr>
<tr>
<td>8</td>
<td>0.78</td>
<td>12</td>
<td>0.33</td>
<td>36.36</td>
<td>28.36</td>
</tr>
<tr>
<td>9</td>
<td>0.88</td>
<td>12</td>
<td>0.42</td>
<td>28.57</td>
<td>25.14</td>
</tr>
<tr>
<td>10</td>
<td>0.98</td>
<td>12</td>
<td>0.47</td>
<td>25.53</td>
<td>25.02</td>
</tr>
<tr>
<td>11</td>
<td>1.0</td>
<td>12</td>
<td>0.5</td>
<td>24.00</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>1.0</td>
<td>12</td>
<td>0.55</td>
<td>21.82</td>
<td>21.82</td>
</tr>
<tr>
<td>13</td>
<td>1.0</td>
<td>12</td>
<td>0.55</td>
<td>21.82</td>
<td>21.8</td>
</tr>
<tr>
<td>14</td>
<td>1.0</td>
<td>12</td>
<td>0.62</td>
<td>19.35</td>
<td>19.4</td>
</tr>
<tr>
<td>15</td>
<td>1.0</td>
<td>12</td>
<td>0.67</td>
<td>17.91</td>
<td>17.9</td>
</tr>
<tr>
<td>Jumlah/ Total</td>
<td>6.04</td>
<td>180</td>
<td>5.75</td>
<td>607.61</td>
<td>336.47</td>
</tr>
<tr>
<td>Rata-rata/ Average</td>
<td>0.40</td>
<td>12</td>
<td>0.38</td>
<td>40.51</td>
<td>22.43</td>
</tr>
</tbody>
</table>

Dari tabel 1 terlihat bahwa produktifitas kerja penyaradan rata - rata 22.43 m² hm/jam, jika angka kubikasi tersebut di konversi ke ton dimana angka konversi *Acacia mangium* 1,00 (Anonim, 2009) maka produktifitas tetap sebesar 22.43 ton hm/jam. Terlihat juga bahwa nilai volume penyaradan rata - rata tetap stabil yaitu 12 m³ tetapi dengan adanya jarak sarad yang berbeda maka produktivitasnya menjadi berbeda. Untuk mengetahui apakah jarak sarad tersebut berpengaruh nyata (*significant*) terhadap produktivitas maka perlu dianalisis secara statistik. Hasil analisis sidik ragam dengan persamaan $Y_i = bo + bi X_i$ atau $Y = 2,4 + 0,01 X_i$ menunjukan besarnya F hitung = 1,0554 < F table =2,40. Dengan demikian dapat disimpulkan bahwa jarak sarad tidak terpengaruh nyata terhadap produktivitas kerja (*not significant*). Artinya volume kayu yang disarad tetap stabil sesuai dengan kapasitas alat. Menurut keterangan bahwa kapasitas alat optimal adalah 20 ton dan maksimum 40 ton (Anonim, 2010), Sementara fakta di lapangan volume kayu yang disarad rata rata 12 ton atau masih berada di bawah standar muatan optimal, Hal ini menunjukkan bahwa operator cukup peduli terhadap kondisi alat dengan menunjukkan cara kerja yang hati-hati dan tidak membawa muatan yang berlebih. Operator faham bahwa kapasitas angkut maksimum alat 40 ton adalah kapasitas batas paling ekstrem. Selain itu operator menyadari bahwa alat yang digunakannya masih baru dan harganya sangat
mahal. Operator juga memahami bahwa untuk bekerja secara aman dan lancar, maka alat tersebut harus dijaga volume muatannya sehingga tidak cepat rusak.

Apabila dibandingkan dengan penyaradon dengan menggunakan forwarder merek timber G 10 dan timber jack 10,10 B yang beroperasi di HPH yang berada di Sumatera Selatan maka produktivitasnya menunjukkan hampir tidak jauh berbeda dengan Valmet forwarder yang diteliti, dimana timber jack produktivitasnya 18,25 - 21,25 m³ hm/jam (Dulsalam dan Djaban, T, 2006). Hal ini dapat dimaklumi karena diameter kayu yang disadarkan dengan timber jack cukup besar yaitu rata - rata berdiameter 50 cm dan panjang berkisar 8 - 10 dengan jumlah batang kayu hanya 1-2 batang, sementara kayu yang di sarad oleh Valmet forwarder diameter kayu berkisar 10 - 30 cm dengan panjang rata - rata 4 m tetapi kayu yang disadarkan jumlahnya lebih dari 10 batang.

B. Kondisi Jalan Sarad

Dalam kegiatan pemanenan kayu bulat di HPHTI atau HPH, keberadaan jalan sarad adalah merupakan hal yang sangat penting. Sebab dengan adanya jalan sarad kayu hasil hutan dapat keluar dari tempat penambangan menuju Tempat Penimbunan Kayu dengan tepat waktu sesuai jadwal yang telah ditentukan. Untuk mengetahui kondisi jalan dapat dilihat pada gambar 2 berikut.

Gambar 2. Konstruksi permukaan jalan sarad

Figure 2. The Contraction of skidding road surface

Keterangan (Remarks) : P - Q = Lebar jalan/Wide of road 4m, A dan B = Permukaan tanah hutan yang tertekan dengan lebar masing - masing 0,5 m/Compacted forest soil surface with 0,5m width, C = Humus tanah/Mulched soil, D = Tanah padat/Compact soil, X = Lapisan bantalan jalan sarad /The layer of skidding road sleeper.

Pada Gambar 2 terlihat kondisi jalan sarad di mana jalan sarad tersebut tidak dibuat oleh traktor sebagaimana biasanya pembuatan jalan di HPH dengan melakukan pengupasan lapisan tanah terlebih dahulu. Prosedur ini disesuaikan dengan keberadaan posisi stok kayu yang sudah tertumpuk di lapangan terbuka, yang sudah dibuat oleh para operator chainsaw dengan para pembantunya.

Dalam pembuatan jalan sarad tidak ada pengupasan lapisan tanah dan gusuran tanah tetapi hanya ada permukaan tanah yang tertekan oleh beban muatan melalui roda Valmet forwarder sehingga bekas roda mesin yang menekan tanah tersebut menjadi bengtuk seperti parit. Pada bekas jalan sarad tersebut masih banyak akar pohon, daun, tanaman bawah dan serpihan limbah kayu tebangan yang dijadikan bantalan jalan sarad. Pola distribusi jalan sarad di areal tebangan dapat dilihat pada Gambar 3.

Dari Gambar 3 terlihat bahwa jalan sarad yang ada berbentuk seperti dahan pohon yang bercabang. Setiap cabang terdapat tumpukan kayu bulat. Jalur jalan sarad tersebut arahnya melengkung dan memanjang mengikuti kontur dengan derajat kemiringan antara 2 - 10 %. Hamzah, Z. (1983) menyatakan, bahwa jika kemiringan jalan sarad mencapai 10% dengan kondisi permukaan badan jalan yang tanahnya lembek maka angkutan truk logging per-
Analisis produktivitas, biaya operasi dan pamadatan tanah pada penyaradan (Zakaria Basari & Dulsalam)

gerakannya akan lambat. Alasan ini efektif bagi konstruksi truk logging, di mana bak dan kabinnya menjadi satu, roda bannya tidak dirancang untuk bergerak di tanah yang lembek dengan kemiringan yang tajam, sehingga memerlukan pengerasan jalan. Pada kondisi jalan hutan seperti di atas, Valmet folwarder dapat bergerak masuk mendekati ke lokasi tebangan. Valmet forwarder memiliki gerakan lincah badannya dapat berputar 180°, Selain itu Valmet forwarder dapat bergerak secara sistematis tanpa memotong puncak bukit serta bergerak mengikuti kontur.

Jika kondisi jalan sarad di atas itu dibandingkan dengan hasil pengalaman penelitian yang pernah dilakukan di HPH, menunjukkan bahwa setiap akan melakukan penyaradan 1 batang kayu bulat dengan volume sekitar 4 m³ menggunakan traktor D88, membutuhkan pembukaan lahan hutan rata - rata sejauh 100 m, dengan volume tanah yang bergeser dan terbuka mencapai 20 m³ (Basari, 2008). Sementara itu penyaradan dengan mesin Valmet forwarder di HPHHTI tidak menyebabkan pembukaan lapisan permukaan tanah hutan yang berlebihan.

Tabel 2. Jalur pengujian jalan sarad yang tertekan

<table>
<thead>
<tr>
<th>Plot ukur/Sample plots</th>
<th>Panjang jalan sarad/Road skidding length (m)</th>
<th>Panjang tanah tertekan/Length of the compacted soil (m)</th>
<th>Lebar tanah tertekan/Width of soil compacted (m)</th>
<th>Tinggi tanah tertekan/Height Soil of compacted (m)</th>
<th>Volume tanah tertekan/Volume of the compacted soil (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1.2</td>
<td>0.22</td>
<td>1.056</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>0.21</td>
<td>1.89</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>0.18</td>
<td>1.44</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>0.18</td>
<td>1.8</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>10</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>14</td>
<td>1</td>
<td>0.08</td>
<td>1.12</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>4.5</td>
<td>1</td>
<td>0.08</td>
<td>0.36</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>0.05</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>0.05</td>
<td>0.4</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>0.04</td>
<td>0.32</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>8</td>
<td>1</td>
<td>0.4</td>
<td>0.32</td>
</tr>
<tr>
<td>Jumlah/TOTAL</td>
<td>153</td>
<td>121.5</td>
<td>15.2</td>
<td>3.19</td>
<td>12.01</td>
</tr>
<tr>
<td>Rata-rata/Average</td>
<td>10.2</td>
<td>8.1</td>
<td>1.01</td>
<td>0.21</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Gambar 3. Pola jalan sarad

Figure 3. Skidding road pattern

Keterangan (Remarks) : A = Tempat pengumpulan kayu (TPK) (Log yard), B = Jalan utama (Main road), C = jalan sarad (Skidding road), O = Tumpukan kayu yang diteliti (wood stacking sample).
Hasil pengukuran menunjukkan, bahwa panjang jalan sarad yang diteliti adalah sejauh 1596 m dengan lebar rata - rata 4 m atau seluas 6380 m². Dari jalan sarad sejauh itu dibuat 15 buah contoh tanah yang diambil dari 15 titik yang ekstrim bentuk pemadatannya. Dari 15 titik pengukuran jalan sarad menunjukkan adanya permukaan tanah yang tertekan yang diakibatkan oleh mesin sarad rata - rata mencapai 80%. Untuk mengetahui permukaan tanah hutan yang tertekan akibat mesin sarad dapat dilihat pada Tabel 2.

Tabel 2 menunjukkan bahwa dari contoh ukur sejauh 153 m jalan sarad yang tertekan akibat operasi alat sarad mekanis menyebabkan amblesnya volume permukaan tanah hutan sebesar 12,01 m³. Namun demikian untuk mengetahui apakah tekanan alat tersebut menyebabkan terjadinya pemadatan tanah yang dapat mengganggu lingkungan perlu dilakukan uji kerapatan massa tanah dan porositas tanah.

Perlu dikemukakan bahwa dalam kegiatan peremanan hasil hutan yang menggunakan alat - alat mekanis, sebenarnya resiko gangguan terhadap lingkungan hutan tidak bisa dihindarkan, namun demikian usaha perbaikan harus tetap dilakukan. Seperti halnya pada perusahaan HTI yang diteliti, penyaratan dilakukan di daerah yang lapisan tanahnya sudah ditumpuk limbah kayu, serasah akar dan daun sehingga lapisan tanah tidak terkupas.

C. Biaya Penyaradan

Hasil wawancara dan pengutipan data dari kantor perusahaan menunjukkan bahwa harga Valmet forwarder berikut tungkai crane sebesar Rp 2 milliar dan harga bekas Rp 1 miliar. Upah kerja operator mesin dan pembantu (helper) masing-masing Rp. 2.000.000,-/bulan dan Rp.1.000.000,-/bulan. Penggunaan bahan bakar 200 liter/hari, penggunaan oli pelumas 1 liter/hari, jam kerja dalam 1 tahun 1000 jam, biaya pemeliharaan alat dalam 1 tahun 1 % dari harga alat bekas (Anonim, 2010).

Berdasarkan hasil perhitungan, maka besarnya jumlah komponen biaya operasi dapat diketahui seperti yang tercantum dalam Tabel 3 berikut.

<table>
<thead>
<tr>
<th>No/No</th>
<th>Komponen biaya (Cost component)</th>
<th>Biaya operasi (Operational cost) (Rp/jam/hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Biaya tetap (Fixed cost) :</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Biaya penyusutan (Depreciation cost)</td>
<td>250.000</td>
</tr>
<tr>
<td>2.</td>
<td>Bunga bank (Bank interest)</td>
<td>90.000</td>
</tr>
<tr>
<td>3.</td>
<td>Pajak (Tax)</td>
<td>10.000</td>
</tr>
<tr>
<td>4.</td>
<td>Asuransi (Insurance)</td>
<td>15.000</td>
</tr>
<tr>
<td>B</td>
<td>Biaya tidak tetap (Variable cost) :</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Upah kerja (Wage cost)</td>
<td>31.250</td>
</tr>
<tr>
<td>6.</td>
<td>Perawatan (Maintenance)</td>
<td>5.000</td>
</tr>
<tr>
<td>7.</td>
<td>Bahan bakar (Fuel)</td>
<td>66.660</td>
</tr>
<tr>
<td>8.</td>
<td>Pelumas (Lubricant)</td>
<td>1.666</td>
</tr>
<tr>
<td></td>
<td>Jumlah (Total)</td>
<td>469.576</td>
</tr>
</tbody>
</table>

24
Selanjutnya, biaya operasi penyuaran dihitung sebagai berikut:

\[
\text{Biaya operasi} = \frac{\text{Biaya tetap (Rp/jam)} + \text{Biaya tidak tetap (Rp/jam)}}{\text{Produktifitas (m³/jam)}}
\]

\[
\text{Biaya operasi} = \frac{469.576 \text{ (Rp/jam)}}{22.43 \text{ m³/jam}} = 20.935 \text{ Rp/m³}
\]

D. Sistem Pengelolaan

Berdasarkan hasil kajian di lapangan, nampak dengan jelas bahwa sistem silvikultur yang didigunakan oleh perusahaan HTI ini adalah sistem tebang habis penanaman buatan (THPB). Di mana luas areal yang di panen dalam satu rencana karya tahunan (RKT) tidak kurang dari 1000 Ha, di mana pemanenan di lakukan dalam satu hamparan pegunungan yang sangat luas dengan waktu antara 6 - 8 bulan. Jika dikaji secara teknis dan ekonomis menurut analisa bisnis mungkin hal itu menguntungkan, sebab semua kegiatan dilakukan dalam satu tempat sehingga pekerjaan lebih terkonsentrasi dan mudah pengendaliannya. Namun demikian, perlu juga diperhitungkan aspek ekologisnya yang dapat menimbulkan gangguan terhadap habitat fauna liar, aliran air di bawah tanah dan perubahan iklim mikro.

IV. KESIMPULAN DAN SARAN

A. Kesimpulan:

1. Produktivitas alat \textit{Valmet fothrower} rata - rata mencapai 22,43 m³/jam.
2. Jarak sarad tidak berpengaruh nyata terhadap produktivitas
3. Nilai kerapatan massa tanah dan porositas tanah yang merupakan indikator kepadatan tanah masing-masing besarnya adalah 0,42 g/cm³ dan 84,15%. Dengan demikian kepadatan tanah termasuk katagori ringan/longgar dan pada kondisi tanah demikian pertumbuhan vegetasi masih baik
4. Biaya operasional penyuaran Rp 20.935,-/m³.

B. Saran:

Untuk meminimalisir gangguan lingkungan hutan secara tiba-tiba, maka pada kegiatan pemanenan hutan HTI perlu dipertimbangkan adanya pola tebang papan catur, yaitu pola kombinasi antara blok tebang habis dengan blok hijau yang luasnya masing-masing 100 m x 100 m.

DAFTAR PUSTAKA

Bogor
