KAJIAN STRUKTUR ARANG-PIROLISIS, ARANG-HIDRO DAN KARBON AKTIF DARI KAYU Acacia mangium Willd. MENGGUNAKAN DIFRAKSI SINAR-X

Saptadi Darmawan, Wasrin Syafii, Nyoman J Wistara, Akhirudin Maddu, Gustan Pari

Abstract


Kegunaan karbon aktif sangat luas dan penting untuk beragam aplikasi. Arang-hidro dari biomassa yang dibuat melalui proses karbonisasi hidrotermal merupakan prekursor alternatif terhadap prekursor konvensional untuk pembuatan karbon aktif yang selama ini banyak menggunakan arang dari proses pirolisis (prekursor konvensional). Tulisan ini menganalisa struktur kristalin arang-pirolisis dan arang-hidro suhu 200 ?C dan 300 ?C serta produk karbon aktif menggunakan difraksi sinar-X (XRD). Hasil penelitian menunjukkan bahwa indeks kematangan dan tingkat aromatisasi karbon dari prekursor (baik konvensional atau alternatif) meningkat setelah diaktivasi; jarak antar lapisan graphene (d002) semakin kecil, sementara itu derajat kristalinitas, jumlah, tinggi dan lebar lapisan aromatik semakin besar. Arang-hidro memiliki derajat kristalinitas, indeks kematangan dan tingkat aromatisasi lebih rendah dari arang pirolisis suhu 300?C dengan kandungan bahan mudah menguap lebih tinggi. Keduanya telah membentuk struktur karbon bersifat amorf. Karbon aktif dari arang-hidro suhu 300?C menghasilkan daya jerap iodin tertinggi. Analisis XRD terhadap arang-pirolisis dan arang-hidro suhu rendah dapat memprediksi porositas karbon aktif yang dihasilkan.


Keywords


Karbon aktif, arang-pirolisis, arang-hidro, analisis XRD, kayu mangium

References


Bobleter, O. (1994). Hydrothermal degradation of polymers derived from plants. Progress in polymer science, 19(5), 797-841.

[BSN] Badan Standarisasi Nasional. (1995). Karbon Aktif. SNI 1-3730. Jakarta: Badan Standarisasi Nasional.

Chuenklang, P., Thungtong, S., & Vitidsant, T. (2002). Effect of activation by alkaline solution on properties of activated carbon from rubber wood. Journal of Metals, Materials and Minerals, 12(1), 29-38.

Demiral, H., Hakan, D., & Demiral, I. (2008). Pore structure of activated carbon prepared from hazelnut bagasse by chemical activation. Surf. Interface Anal., 40, 616-619.

Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms. Biofuels, Bioprod. Bioref., 4, 160-177.

Hu, B., Yu, S.H., Wang, K., Liu, L., & Xu, X.W. (2008). Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Trans., 5414-5423.

Iguchi, M. (1997). Practice of Polymer X-ray Diffraction. Bandung: Bandung Institute Technology.

John, M.J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 343-364.

Kercher, A.K., & Nagle, D.C. (2003). Microstructural evolution during charcoal carbonization by X-ray diffraction analysis. Carbon, 41, 15-27.

Libra, J.A., Ro, K.S., Kamman ,C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.M., Fhner, C.F., Bens, O., & Kern, J. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 89-124

Lv, G.J., Wu, S.B., & Lou, R. (2010). Characteristics of corn stalk hemicellulose pyrolysis in a tubular reactor. BioResources, 5(4), 2051-2062.

Manoj, B., & Kunjomana, A. (2012). Study of stacking structure of amorphous carbon by X-ray diffraction technique. Int. J. Electrochem. Sci., 7, 3127-3134.

Pari, G. (2011). Pengaruh selulosa terhadap struktur karbon arang Bagian I - Pengaruh suhu karbonisasi. Jurnal Penelitian Hasil Hutan, 29(1), 33-45.

Peters, B. (2011). Prediction of pyrolysis of pistacho shells based on its components: hemicellulose, cellulose and lignin. Fuel Processing Technology, 92(10), 1993-1998.

Pettersen, R.C. (1984). The chemical composition of wood. In Rowell R. (Ed.), The Chemistry of Solid Wood (pp. 57-126). Washington, D.C: ACS.

Poletto, M., Zattera, A.J., Forte, M., & Santana, R. (2012). Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148-153.

Raymundo-Pinero, E., Azais, P., Cacciaguerra, T., & Cazorla-Amoros, D. (2005). KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon, 43, 786-795.

Ryu, J., Suh, Y.W., Ahn, D.J., & Suh, D.J. (2010). Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon, 48, 1990-1998.

Schneider, D., Escala, M., & Supawitta, K. (2011). Characterization of biochar from hydrothermal carbonization of bamboo. International Energy & Environment Foundation, 2(4), 647-652.

Schoening, F.L. (1983). X-ray structure of some South African coals before and after heat treatment at 500 and 1000oC. Fuel, 62(11), 1315-1320.

Sevilla, M., & Fuertes, A. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 49, 2281-2289.

Sonibare, O.O., Haeger, T., & Foley, S.O. (2010). Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy, 35, 5347-5353.

Takagi, H., Maruyama, K., Yoshizawa, N., Yamada, Y., & Sato, Y. (2004). XRD analysis of carbon stacking structure in coal during heat treatment. Fuel, 83(17), 2427-2433.

Titirici, M.M., Antonietti, M., & Baccile, N. (2008). Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem., 10, 12041212.

Wang, L., Guo, Y., Zou, B., Rong, C., Ma, X., Qu, Y., Li, Y., & Wang, Z. (2011). High surface area porous carbons prepared from hydrochars by phosphoric acid activation. Bioresource Technology, 102(2), 1947-1950.

Yoshizawa, N., Maruyama, K., Yamada, Y., Ishikawa, E., Kobayashi, M., Toda, Y., & Shiraishi, M. (2002). XRD evaluation of KOH activation process and influence of coal rank. Fuel, 81(13), 1717-1722.




DOI: https://doi.org/10.20886/jphh.2015.33.2.81-92

Refbacks

  • There are currently no refbacks.


JURNAL PENELITIAN HASIL HUTAN INDEXED BY:

More...


Copyright © 2015 | Jurnal Penelitian Hasil Hutan (JPHH, Journal of Forest Products Research)
eISSN : 2442-8957, pISSN : 0216-4329
JPHH is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.