ISI CONTENT

SIFAT VENIR DAN KAYU LAPIS DARI KAYU SENGON DAN KARET PADA BEBERAPA MACAM UMUR
Veneer and plywood properties made of sengon and rubberwood with several age class
M.I. Iskandar, Suwandi Kliwon & Paribotro Sutigno .. 195

PENGGARUH PERLAKUAN PADA BIJI DAN SUHU PENGEMPAAAN TERHADAP SIFAT FISIKO KIMIA MINYAK KEMIRI
Effect of treatments on seed and pressing temperatures on the physico-chemical properties of candle nut oil
Bambang Wiyono .. 202

FINANCIAL ANALYSIS OF PUYON SOCIAL FORESTRY PROJECT IN EAST JAVA, INDONESIA
Analisis finansial proyek perhutanan sosial puyon, Jawa Timur, Indonesia
Kirsflanti Linda Ginoga .. 208

PENGGARUH PENGUKUSAN DAN PERAJANGAN DAUN GAMBIR (UNCARIA GAMBIR ROXB). TERHADAP MUTU EKSTRAK GAMBIR
The effect of steaming duration and chopping size of gambier leaves (Uncaria gambir ROXB) on quality of gambier extract
Zulnely & Abdul Hakim Lukman ... 217

PEMBUATAN ARANG DAN BRIKET ARANG DARI KAYU MANIS (CINNAMOMUM BURMANII NESS EX. BL) DAN KAYU SUKUN (ARTOCARPUS ALTILOS PARKINSON)
Charcoal and charcoal briquette of cassia vera and breadfruit wood
Sri Komarayati dan Gusmailina .. 225
Vol. 12 No. 6, 1994

ISI/CONTENT

SIFAT VENIR DAN KAYU LAPIS DARI KAYU SENGON DAN KARET PADA BEBERAPA MACAM UMUR
Veneer and plywood properties made of sengon and rubberwood with several age class
M.I. Iskandar, Suwandi Kliwon & Paribotro Sutigno .. 195

PENGARUH PERLAKUAN PADA BIJI DAN SUHU PENGEMPAAAN TERHADAP SIFAT FISIKO KIMIA MINYAK KEMIRI
Effect of treatments on seed and pressing temperatures on the physico-chemical properties of candle nut oil
Bambang Wiyono ... 202

FINANCIAL ANALYSIS OF PUJON SOCIAL FORESTRY PROJECT IN EAST JAVA, INDONESIA
Analisis finansial proyek perhutanan sosial pujon, Jawa Timur, Indonesia
Kirsfianti Linda Ginoga ... 208

PENGARUH PENGUKUSAN DAN PERAJANGAN DAUN GAMBIR (UNCARIA GAMBIIR ROXB) TERHADAP MUTU EKSTRAK GAMBIR
The effect of steaming duration and chopping size of gambier leaves (Uncaria gambir ROXB) on quality of gambier extract
Zulnely & Abdul Hakim Lukman .. 217

PEMBUATAN ARANG DAN BRIKET ARANG DARI KAYU MANIS (CINNAMOMUM BURMANII NESS EX. BL) DAN KAYU SUKUN (ARTOCARPUS ALTILIS PARKINSON)
Charcoal and charcoal briquette of cassiavera and breadfruit wood
Sri Komarayati dan Gusmalina ... 225

PUSAT PENELITIAN DAN PENGEMBANGAN HASIL HUTAN DAN SOSIAL EKONOMI KEHUTANAN
FOREST PRODUCTS AND SOCIO-ECONOMICS RESEARCH AND DEVELOPMENT CENTRE
BOGOR – INDONESIA
SIFAT VENIR DAN KAYU LAPIS DARI KAYU SENQON DAN KARET PADA BEBERAPA MACAM UMUR
(Veneer and plywood properties made of sengon a id rubberwood with several age class)

Oleh/By
M.I. Iskandar, Suwandhi Kliwon & Paribotro Mutigno

Summary

The result of the suitability study of two wood species as raw material for veneer and plywood are reported. The wood raw material used rubberwood (Hevea brasiliensis) and sengon (Paraserianthes falcatoria). The wood used were obtained from different age classes i.e. 10 and 20 years for rubberwood and 10 and 15 years for sengon. The study consisted of log peeling characteristic, veneer properties and some physical-mechanical properties of plywood (triplex and multiplex).

All of the logs from two wood species could be peeled in cold condition, producing 1.5 mm veneer at a cutting angle between 89°30'-91°30'. The average shrinkage of veneer is 4.51 % and the average veneer swelling from oven-dry to air dry is 3.30 %.

The bonding strength of plywood from all wood species conform with the Indonesian standard, German standard and Japanese standard for type 11 or water resistant. The specific gravity and mechanical properties of plywood from the older tree tends higher than that from the younger tree.

I. PENDAHULUAN

II. BAHAN DAN METODE PENELITIAN

A. Bahan

Jenis kayu yang diteliti adalah kayu sengon berumur 10 dan 15 tahun dan kayu karet berumur 10 dan 20 tahun versals dari daerah Jawa Barat. Perekat yang digunakan adalah Urea formaldehida cair dengan penegeras NH4Cl dan ekstender terigu.
Sifat keteguhan rekat kayu lapis dibandingkan dengan tiga macam standar yaitu:
1. Standar Industri Indonesia tipe II (Anonim, 1980)
2. Standar Jepang tipe II (Anonim, 1973)
3. Standar Jerman DIN 68705-1W 67 (Anonim, 1975)

III. HASIL DAN PEMBAHASAN

A. Venir

Semua jenis kayu dapat dikuas dalam keadaan dingin. Data dolok yang dikuas disajikan pada Tabel 2. Dia neter dolok berbiskis antara 33,38 cm (karet umur 10 t.hun) 37,38 cm (sengon umur 15 tahun). Semakin tinggi umur pohon semakin besar pula diameter doloknya, sehingga wajar rendemennya lebih tinggi. Hal ini terlihat baik pada kayu sengon maupun kayu karet. Bila dibandingkan kayu sengon dan kayu karet ternyata rendemen venir kayu karet lebih besar daripada kayu sengon walaupun diameter doloknya lebih kecil. Hal ini disebabkan oleh adanya pecah bontos pada kayu sengon sehingga banyak venir yang rusak.

Diameter kayu bisa kupas rataannya 13 cm atau 13,6% dari volume dolok dengan selang 12,1% (sengon umur 15 tahun) - 14,7% (karet umur 10 tahun). Diameter cakar yang digunakan adalah 10 cm.

Mutu venir menurut standar Indonesia berdasarkan cacat alami termasuk C dan D. Macam cacat yang paling berat adalah mata kayu busuk pada kayu sengon dan pada kayu karet lubang gerek serta jamur biru.

Hasil pengukuran tebal venir tercantum pada Tabel 3. Keragaman tebal venir cukup baik seperti ditunjukkan oleh koefisien keragaman yang kurang dari 5%.

Tabel 1. Jenis kayu yang dicoba

<table>
<thead>
<tr>
<th>Nama daerah</th>
<th>Nama botanis</th>
<th>Berat jenis</th>
<th>Kelas</th>
<th>Awet</th>
<th>Kuat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Specific gravity</td>
<td>Class</td>
<td>Durability</td>
<td>Strength</td>
</tr>
<tr>
<td>Sengon</td>
<td>Paraserianthes falcatoria</td>
<td>0,33 (0,24-0,49)</td>
<td>IV/V</td>
<td>IV-V</td>
<td></td>
</tr>
<tr>
<td>Karet</td>
<td>Hevea brasiliensis</td>
<td>0,61 (0,55-0,70)</td>
<td>V</td>
<td>II-III</td>
<td></td>
</tr>
</tbody>
</table>

Sumber (Source): Oey Djoen Seng (1964)

C. Sifat Fisis dan Mekanik Kayu Lapis

Karena dalam pembuatan kayu lapis dipergunakan pengempaan dingin dan panas, maka akan terjadi pengurangan tebal kayu lapis. Hal ini menyebabkan berat jenis kayu lapis lebih tinggi daripada berat jenis kayunya (Tabel 6). Pengurangan tebal berbiskis antara 0,21 mm (karet umur 20 tahun) - 0,24 mm (sengon umur 10 tahun). Berat jenis kayu lapis berbiskis antara 0,44 (sengon umur 10 tahun) - 0,70 (karet umur 20 tahun), sedangkan berat jenis kayu yang dipakai dalam penelitian ini ada di antara 0,37 (sengon umur 10 tahun) - 0,69 (karet umur 20 tahun). Makan tinggi umur pohon, makan tinggi pula berat jenis kayu lapisnya dan makin rendah perbedaan antara berat jenis kayu lapis dengan kayu utuhnya.

IV. KESIMPULAN

Pembuatan venir setebal 1,5 mm dapat dilakukan dalam keadaan dingin dengan sudut kupas berbiskis antara 89°30' - 91°30'. Keragaman tebal venir cukup baik.

Penyusutan venir dari keadaan basah sampai kering mutlak rataannya 4,61%. Pengembangan venir dari keadaan kering mutlak sampai kering udara rataannya 3,33%.

Keteguhan rekat kayu lapis tipe II semua jenis kayu dan umur memenuhi standar Indonesia, Jepang dan Jerman. Proses pengempaan menyebabkan pengurangan tebal dengan nilai rataan 0,22 mm.
Tabel 2. Data Dolok yang Dikupas

Table 2. Data of the Peeled Logs

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis kayu</th>
<th>Umur</th>
<th>Diameter</th>
<th>Panjang</th>
<th>Pengurangan</th>
<th>Perbandingan</th>
<th>Rendemen</th>
<th>Kayu sisa kupasan</th>
<th>Limbah veneer</th>
<th>Mutu veneir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wood species</td>
<td>Age</td>
<td>cm Diameter</td>
<td>Length</td>
<td>Taper cm/m</td>
<td>Diameter d-min/d-max</td>
<td>Recovery %</td>
<td>Log core cm</td>
<td>Veneer waste</td>
<td>Veneer grade</td>
</tr>
<tr>
<td>1.</td>
<td>Sengon</td>
<td>10</td>
<td>34,13</td>
<td>1,20</td>
<td>1,25</td>
<td>1,01</td>
<td>47,57</td>
<td>13</td>
<td>14,51</td>
<td>25,29</td>
</tr>
<tr>
<td>2.</td>
<td>Sengon</td>
<td>15</td>
<td>37,38</td>
<td>1,20</td>
<td>0,83</td>
<td>1,02</td>
<td>53,34</td>
<td>13</td>
<td>12,09</td>
<td>26,33</td>
</tr>
<tr>
<td>3.</td>
<td>Karet</td>
<td>10</td>
<td>33,38</td>
<td>1,20</td>
<td>0,83</td>
<td>1,01</td>
<td>56,59</td>
<td>13</td>
<td>14,70</td>
<td>13,75</td>
</tr>
<tr>
<td>4.</td>
<td>Karet</td>
<td>20</td>
<td>35,75</td>
<td>1,20</td>
<td>0,98</td>
<td>1,09</td>
<td>58,31</td>
<td>13</td>
<td>13,22</td>
<td>14,79</td>
</tr>
</tbody>
</table>

Tabel 3. Tebal Venir

Table 3. Veneer Thickness

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis kayu</th>
<th>Umur</th>
<th>Tebal pengupasan</th>
<th>Sudut kupasan</th>
<th>Tebal rataan</th>
<th>Simpangan dari tebal pengupasan</th>
<th>Simpangan baku</th>
<th>Koefisien keragaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wood species</td>
<td>Age</td>
<td>Cutting thickness</td>
<td>Cutting angle</td>
<td>Mean thickness</td>
<td>Deviation from cutting thickness</td>
<td>Standard deviation</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>1.</td>
<td>Sengon</td>
<td>10</td>
<td>1,5</td>
<td>91° 30'</td>
<td>1,54</td>
<td>3,15</td>
<td>0,0485</td>
<td>0,31</td>
</tr>
<tr>
<td>2.</td>
<td>Sengon</td>
<td>15</td>
<td>1,5</td>
<td>89° 30'</td>
<td>1,54</td>
<td>3,11</td>
<td>0,0495</td>
<td>0,29</td>
</tr>
<tr>
<td>3.</td>
<td>Karet</td>
<td>10</td>
<td>1,5</td>
<td>89° 30'</td>
<td>1,55</td>
<td>3,33</td>
<td>0,0046</td>
<td>0,29</td>
</tr>
<tr>
<td>4.</td>
<td>Karet</td>
<td>20</td>
<td>1,5</td>
<td>89° 30'</td>
<td>1,56</td>
<td>3,01</td>
<td>0,0049</td>
<td>0,32</td>
</tr>
</tbody>
</table>
Tabel 4. Sifat fisik veneer

Table 4. Physical properties of Veneer

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis kayu</th>
<th>Umur</th>
<th>Kadar air</th>
<th>Penyuatan</th>
<th>Perbandingan tinggi tumpukan dengan jumlah tebal veneir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wood species</td>
<td>Age</td>
<td>Basah Green</td>
<td>Kering udara</td>
<td>Shrinkage</td>
</tr>
<tr>
<td></td>
<td>th/yr</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Sengon</td>
<td>10</td>
<td>48,30</td>
<td>15,18</td>
<td>0,39</td>
</tr>
<tr>
<td>2.</td>
<td>Sengon</td>
<td>15</td>
<td>71,31</td>
<td>16,05</td>
<td>0,49</td>
</tr>
<tr>
<td>3.</td>
<td>Karet</td>
<td>10</td>
<td>35,88</td>
<td>13,52</td>
<td>0,50</td>
</tr>
<tr>
<td>4.</td>
<td>Karet</td>
<td>20</td>
<td>34,89</td>
<td>13,32</td>
<td>0,52</td>
</tr>
</tbody>
</table>

Tabel 5. Keteguhan rekat tahan air

Table 5. Water resistant bonding strength

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis kayu</th>
<th>Umur</th>
<th>Keteguhan rekat</th>
<th>Kerusakan kayu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wood Species</td>
<td>Age</td>
<td>Bonding strength</td>
<td>Wood failure</td>
</tr>
<tr>
<td></td>
<td>th/yr</td>
<td>kg/cm²</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rataan Mean</td>
<td>Minimum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X - tS</td>
</tr>
<tr>
<td>1.</td>
<td>Sengon</td>
<td>10</td>
<td>11,99</td>
<td>9,92</td>
</tr>
<tr>
<td>2.</td>
<td>Sengon</td>
<td>15</td>
<td>13,72</td>
<td>11,42</td>
</tr>
<tr>
<td>3.</td>
<td>Karet</td>
<td>10</td>
<td>11,17</td>
<td>10,11</td>
</tr>
<tr>
<td>4.</td>
<td>Karet</td>
<td>20</td>
<td>16,58</td>
<td>15,03</td>
</tr>
</tbody>
</table>

Keterangan (Remarks):
\[X = \text{Rataan (Mean)} \]
\[X - t_{S} = \text{Batas bawah kepercayaan pada peluang 95 \%} \]
(Confidence interval lower limit at 95 \% level).
<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis kayu</th>
<th>Umur</th>
<th>Pengurangan tebal</th>
<th>Venir</th>
<th>Tripleks</th>
<th>Kayu</th>
<th>Selisih</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Wood species)</td>
<td>(Age)</td>
<td>(Thickness reduction)</td>
<td>(Veneer)</td>
<td>(Triplex)</td>
<td>(Solid)</td>
<td>(Différent)</td>
</tr>
<tr>
<td></td>
<td>th/year</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Sengon</td>
<td>10</td>
<td>0,24</td>
<td>0,39</td>
<td>0,44</td>
<td>0,37</td>
<td>0,03</td>
</tr>
<tr>
<td>2.</td>
<td>Sengon</td>
<td>15</td>
<td>0,22</td>
<td>0,49</td>
<td>0,47</td>
<td>0,45</td>
<td>0,02</td>
</tr>
<tr>
<td>3.</td>
<td>Karet</td>
<td>10</td>
<td>0,22</td>
<td>0,50</td>
<td>0,68</td>
<td>0,66</td>
<td>0,02</td>
</tr>
<tr>
<td>4.</td>
<td>Karet</td>
<td>20</td>
<td>0,21</td>
<td>0,52</td>
<td>0,70</td>
<td>0,69</td>
<td>0,01</td>
</tr>
<tr>
<td>No.</td>
<td>Jenis Kayu</td>
<td>Umur</td>
<td>Tebal</td>
<td>Kadar Air</td>
<td>Berat Jis</td>
<td>Keteguhan Lentur (Bending strength), kg/cm²</td>
<td>Keteguhan Tarik (Tensile strength), kg/cm²</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modulus Patah (MOR)</td>
<td>Modulus Elastisitas (MOE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parallel to grain (X)</td>
<td>Perpendicular to grain (Sx)</td>
</tr>
<tr>
<td>1</td>
<td>Sengon</td>
<td>10</td>
<td>4.2</td>
<td>10.98</td>
<td>0.44</td>
<td>1103.09</td>
<td>62.34</td>
</tr>
<tr>
<td>2</td>
<td>Sengon</td>
<td>10</td>
<td>7.2</td>
<td>10.13</td>
<td>0.45</td>
<td>790.20</td>
<td>27.82</td>
</tr>
<tr>
<td>3</td>
<td>Sengon</td>
<td>15</td>
<td>4.3</td>
<td>10.29</td>
<td>0.45</td>
<td>1531.57</td>
<td>261.15</td>
</tr>
<tr>
<td>4</td>
<td>Sengon</td>
<td>15</td>
<td>7.3</td>
<td>11.05</td>
<td>0.47</td>
<td>887.12</td>
<td>53.71</td>
</tr>
<tr>
<td>5</td>
<td>Keran</td>
<td>10</td>
<td>4.2</td>
<td>11.01</td>
<td>0.68</td>
<td>1051.20</td>
<td>169.09</td>
</tr>
<tr>
<td>6</td>
<td>Keran</td>
<td>10</td>
<td>7.2</td>
<td>9.88</td>
<td>0.70</td>
<td>680.99</td>
<td>73.58</td>
</tr>
<tr>
<td>7</td>
<td>Keran</td>
<td>20</td>
<td>4.3</td>
<td>11.16</td>
<td>0.70</td>
<td>13003.38</td>
<td>164.64</td>
</tr>
<tr>
<td>8</td>
<td>Keran</td>
<td>20</td>
<td>7.3</td>
<td>9.37</td>
<td>0.73</td>
<td>749.85</td>
<td>23.94</td>
</tr>
</tbody>
</table>

Keterangan: \bar{X} = Rata-rata (Mean), Sx = Simpangan baku (Standard deviation), Ulangan (Replication) = 5
Berat jenis kayu lapis yang berasal dari pohon yang berumur lebih tinggi, cenderung lebih besar. Demikian pula sifat mekanisnya.

DAFTAR PUSTAKA

PENGARUH PERLAKUAN PADA BIJI DAN SUHU PENGEMPAPAAN TERHADAP SIFAT FIS KO KIMIA MINYAK KEMIRI
(Effect of treatments on seed and pressing temperatures on the physico-chemical properties of candle nut oil)

C. leh/By
Bambang Wiyono

Summary
The objective of this research is to study the effect of treatments on seed and pressing temperatures on candle nut oil properties. The treatments consisted of steaming, dry-frying and control. The candle nut seed having been treated was pressed at temperatures of 65 and 135 °C. The data obtained were analysed by using factorial design, and the difference between means were tested with the LSD procedure, calculated with SAS program.
The results showed that an increase in a pressing temperature caused a decrease in a peroxide number and an increase in an iod number. The dry frying treatment on seed before pressing activities produced a few deterioration on candle nut oil, denoted by a high value of iod number and a small value of peroxide and saponification numbers. Compared to a steaming treatment or a control, the dry frying treatment gave a better quality on candle nut oil indicated by a higher value of iod number.

I. PENDAHULUAN

II. BAHAN DAN METODE
A. Bahan
B. Penelitian Penda'lahan
Dalam penelitian pendahuluan ini penelitian diarahkan untuk mengetahui:

2. Pengaruh perajangan biji dan tekanan kempa terhadap rendemen minyak kemiri. Contoh kemiri yang dikempa meliputi kemiri yang dirajang dan yang tidak dirajang. Tekanan kempa yang digunakan terdiri dari 90, 100 dan 110 kg/cm², yang dilakukan pada suhu kamar selama 3 menit.

3. Pengaruh perlakuan pada biji dan waktu kempa terhadap rendemen minyak kemiri. Perlakuan pada biji meliputi kukus, sangrai dan kontrol, sedangkan waktu pengempaan terdiri dari 5, 10 dan 15 menit. Pengempaan dilakukan pada tekanan kempa 110 kg/cm² dan suhu kempa 100-110 °C.

C. Penelitian Utama

III. HASIL DAN PEMBAHASAN

A. Penelitian Pendahuluan

Hasil analisis komponen kimia menunjukkan bahwa kadar lemak biji kemiri 64,81 % (Tabel 1). Kadar lemak hasil perajangan ini sesuai dengan pendapat Heyne (1950) yang mengatakan bahwa biji kemiri mengandung minyak sekitar 60-66 %. Kandungan lemak biji kemiri yang tinggi ini merupakan salah satu pertimbangan sebagai sumber bahan baku industri lemab nabati.

Kadar protein dan kadar air dalam biji kemiri cukup tinggi (Tabel 1). Tingginya kedua faktor ini menyebabkan biji kemiri mudah mengalami kerusakan. Selanjutnya bila dalam proses ekstraksi minyak kemiri, protein ini ikut terekstraksi, maka keberadaan protein di samping komponen non lemak lainnya dalam minyak kemiri yang dihasilkan ini dapat menurunkan kualitas kemiri tersebut.

<table>
<thead>
<tr>
<th>Tabel 1. Komposisi kimia biji kemiri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komposisi kimia</td>
</tr>
<tr>
<td>(Chemical composition)</td>
</tr>
<tr>
<td>Kandungan</td>
</tr>
<tr>
<td>(Content)</td>
</tr>
<tr>
<td>Kadar air (? moisture content), % 7.17</td>
</tr>
<tr>
<td>Kadar lemak (Fat content), % 64.81</td>
</tr>
<tr>
<td>Kadar protein (Protein content), % 16.62</td>
</tr>
<tr>
<td>Kadar asu (Ash content), % 2.06</td>
</tr>
<tr>
<td>Kadar serat kasar (Crude fibre content), % 9.39</td>
</tr>
</tbody>
</table>

Keterangan (Remarks):
a. Berasarkan berat basah (Based on fresh weight).
b. Be dasarkan berat kering (Based on dry weight).

<table>
<thead>
<tr>
<th>Tabel 2. Pengaruh perajangan biji dan tekanan kempa terhadap rendemen minyak kemiri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per. yg (Observation)</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>Biji tidak dirajang</td>
</tr>
<tr>
<td>(Unscliced seed)</td>
</tr>
<tr>
<td>Biji dirajang</td>
</tr>
<tr>
<td>(Sliced s ed)</td>
</tr>
</tbody>
</table>

Keterangan (Remarks):
- Kempa digiris (Cold pressure), 25°C.
- Bahan tidak dibungkus kain (Unwrapped seed).
- Waktu kempa (Pressing time), 3 min.

Dalam Tabel 2 terlihat bahwa kemiri yang dikempa dalam keadaan utuh menghasilkan rendemen minyak kemiri yang lebih besar dibandingkan dengan kemiri yang sudah dirajang. Pada kemiri yang masih utuh, ikatan antar partikel kemiri masih kuat, sehingga menimbulkan daya untuk melawan tekanan yang datangnya dari luar. Daya untuk melawan tekanan dari luar ini lebih besar dibandingkan dengan kemiri yang sudah dirajang, karena pada kemiri yang sudah dirajang, ikatan antar partikel sudah lemah, sehingga tekanan yang datangnya dari luar cenderung diteruskan kearah horisontal, yang menyebabkan bergeraknya partikel kemiri dan minyak ke arah tersebut. Besarnya daya dari kemiri yang utuh untuk melawan tekanan dari luar ini mungkin mengakibatkan minyak yang ada di antara partikel keluar lebih banyak. Dengan demikian rendemen minyak yang dihasilkannya lebih tinggi dibandingkan kemiri yang sudah dirajang. Demikian pula peningkatan tekanan kempe menyebabkan rendemen minyak meningkat.
Dalam penelitian berikutnya, diputuskan bahwa bahan kemiri yang dikemper berupa kemiri yang sudah dirajang terlebih dahulu walaupun rendemen-nya sedikit lebih kecil dari rendemen kemiri yang masa utuh. Dasar pertimbangannya adalah perajangan ini memudahkan ekstraksi dengan metode pengempaan hidraulik (Fincher, 1953). Disamping itu perajangan biji akan memudahkan perlakuan pada biji sehingga tujuan dari perlakuan tersebut tercapai. Ada pun tujuannya adalah untuk mengkoagulasi protein dalam biji seingga butiran-butiran minyak terakumulasi dan minyak yang mudah keluar dari biji, serta menurunkan konsentrasinya minyak dengan permukaan bahan sehingga minyak dapat diperoleh semaksimal mungkin pada waktu biji dikemper (Swern, 1982). Pada penelitian ini biji yang telah dirajang perlu dibungkus untuk mencegah partikel-partikel kemiri ikut mengalir bersama digunakan minyak sehingga dapat meningkatkan kemurnian minyak hasil pengempaan. Diharapkan pembungkusan ini dapat meningkatkan pula daya untuk melawan tekanan dari luar pada kemiri yang sudah dirajang. Oleh karena itu pada penelitian ini, bahan kemiri yang udah dirajang dibungkus dengan kain sebagai bahan dikemper, tekanan kempa yang digunakan 110 kg/cm² yang didasarkan pada penelitian terdahulu, dan dengan suhu kempa sekitar 100-110 °C, serta dengan variasi lama pengempaan 5, 10 dan 15 menit (Table 3).

Tabel 3. Pengaruh perlakuan pada biji dan waktu kempa terhadap rendemen minyak kemiri

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Pengamatan (Observation)</th>
<th>Waktu kempa (Pressing time), min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanpa perlakuan</td>
<td>Rendemen (Yield), %</td>
<td>43.10 47.07 48.70</td>
</tr>
<tr>
<td>(Control)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sangrai (Dry-frying)</td>
<td>Rendemen (Yield), %</td>
<td>49.31 52.94 53.26</td>
</tr>
<tr>
<td>Kukus (Steaming)</td>
<td>Rendemen (Yield), %</td>
<td>45.22 45.02 48.00</td>
</tr>
</tbody>
</table>

Keterangan (Remarks):
Tekanan kempa (Pressure), 110 kg/cm².
Temperatur kempa (Pressing temperature), 100-110 °C.

B. Penelitian Utama

Dari penelitian pendahuluan ini dapat disimpulkan bahwa tekanan kempa yang digunakan pada percobera utama adalah 110 kg/cm², lama pengempaan 15 menit, dan biji dirajang dan dibungkus dengan kain sebelum dikemper. Suhu kempa yang diteliti adalah 65 dan 135 °C, yang diarak.ah untuk mengetahui pengaruhnya terhadap rendemen minyak yang dihasilkan, di samping sifat fisiko-kimianya. Dalam percobera utama ini, pengaruh perlakuan pada biji terhadap sifat fisiko-kimia minyak masih diteliti lebih lanjut, karena perlakuan ini berpengaruh terhadap sifat minyak kemiri serta dapat menggumpal protein (Swern, 1982).

Hasil uji statistik pengaruh suhu dan perlakuan pada biji terhadap sifat minyak menunjukkan bahwa suhu pengempaan berpengaruh secara sangat nyata terhadap rendemen dan bilangan peroksida, dan berpengaruh nyata terhadap bilangan IOD minyak kemiri yang dihasilkan. Sedangkan perlakuan pada biji sebelum dikemper berpengaruh sangat nyata terhadap bilangan peroksida dan bilangan penyabunan, serta berpengaruh nyata terhadap bilangan IODnya. Interaksi antara suhu dan perlakuan pada biji berpengaruh sangat nyata pada bilangan penyabunan dan nyata terhadap bilangan asam minyak (Tabel 5). Selanjutnya dari hasil uji Beda Nyata Terkecil (BNT) menunjukkan bahwa pengempaan pada suhu 65 °C menghasilkan rendemen
Tabel 4. Sifat fisiko-kimia minyak kemiri*
Table 4. Physico-chemical properties of candle nut oil

<table>
<thead>
<tr>
<th>Sifat (Properties)</th>
<th>Suhu kempa (Pressing temperature), °C.</th>
<th>Perlakuan pada biji (Treatment on seed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kukus (Steaming)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sangrai (Dry-frying)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tanpa perlakuan (Control)</td>
</tr>
<tr>
<td>Rendemen (Yield), %</td>
<td>65</td>
<td>41,17</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>48,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55,14</td>
</tr>
<tr>
<td>Berat jenis (Specific gravity)</td>
<td>65</td>
<td>61,54</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>60,86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62,02</td>
</tr>
<tr>
<td>Indeks bias (Refractive index)</td>
<td>65</td>
<td>0,9215</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>0,9220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,9217</td>
</tr>
<tr>
<td>Kekentalan (Viscosity)</td>
<td>65</td>
<td>1,4749</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>1,4746</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,4751</td>
</tr>
<tr>
<td>Transmisi (Transmission), %</td>
<td>65</td>
<td>1,4755</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>1,4760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,4755</td>
</tr>
<tr>
<td>Bil. peroksida (Peroxide number)</td>
<td>65</td>
<td>35,1</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>36,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35,82</td>
</tr>
<tr>
<td>Bil. iod (Iod number)</td>
<td>65</td>
<td>35,49</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>35,97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35,70</td>
</tr>
<tr>
<td>Bil. penyabunan (Saponification number)</td>
<td>65</td>
<td>98,25</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>96,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96,25</td>
</tr>
<tr>
<td>Bil. asam (Acid number)</td>
<td>65</td>
<td>95,40</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>94,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96,05</td>
</tr>
<tr>
<td>Fraksi tak tersabunkan</td>
<td>65</td>
<td>16,26</td>
</tr>
<tr>
<td>(Unsaponifiable matter), %</td>
<td>135</td>
<td>9,985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9,65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94,66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>106,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>127,19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>124,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>197,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>193,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>187,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>195,47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>189,43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>191,94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5899</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5484</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,4831</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,4775</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,7621</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,6155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,22</td>
</tr>
</tbody>
</table>

Keterangan (Remark):
* Rata-rata dua kali ulangan (Mean value of twice replications).*

Tabel 5. Ringkasan sidik ragam sifat fisiko-kimia minyak kemiri
Table 5. Summary for analyses of variance of the physico-chemical properties of candle nut oil

<table>
<thead>
<tr>
<th>Sifat (Properties)</th>
<th>Suhu kempa (Pressing temperature)</th>
<th>Perlakuan (Treatment on candle nut seed)</th>
<th>Interaksi (Interaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendemen (Yield)</td>
<td>23,57**</td>
<td>2,40</td>
<td>2,14</td>
</tr>
<tr>
<td>Berat jenis (Specific gravity)</td>
<td>0,68</td>
<td>0,04</td>
<td>0,56</td>
</tr>
<tr>
<td>Indeks bias (Refractive index)</td>
<td>3,83</td>
<td>0,03</td>
<td>0,48</td>
</tr>
<tr>
<td>Kekentalan (Viscosity)</td>
<td>0,00</td>
<td>0,22</td>
<td>0,02</td>
</tr>
<tr>
<td>Transmisi (Transmission)</td>
<td>1,10</td>
<td>0,16</td>
<td>0,22</td>
</tr>
<tr>
<td>Bilangan peroksida (Peroxide number)</td>
<td>10,31**</td>
<td>11,13**</td>
<td>0,86</td>
</tr>
<tr>
<td>Bilangan iod (Iod number)</td>
<td>8,94*</td>
<td>5,82*</td>
<td>2,27</td>
</tr>
<tr>
<td>Bilangan penyabunan (Saponification number)</td>
<td>0,70</td>
<td>29,75**</td>
<td>9,58**</td>
</tr>
<tr>
<td>Bilangan asam (Acid number)</td>
<td>4,23</td>
<td>4,07</td>
<td>6,70*</td>
</tr>
<tr>
<td>Fraksi tak tersabunkan</td>
<td>0,11</td>
<td>1,05</td>
<td>1,05</td>
</tr>
</tbody>
</table>

Keterangan (Remarks):
** Sangat nyata (Highly significant), P < 0.01.
* Nyata (Significant), P < 0.05.

For Prod. Res. J. Vol. 12 No. 6 (1994)
205
minyak yang berbeda nyata dengan rendemen yang dihasilkan pada suhu pengempaan 135 °C. Demikian pula terhadap bilangan peroksidasa dan bilangan iodnya juga berbeda nyata. Sedangkan perlakuan khusus menghasilkan bilangan peroksidasa dan bilangan iod yang berbeda nyata dengan perlakuan sangrai tanpa perlakuan, namun antara kedua perlakuan tersbut tidak berbeda nyata satu dengan lainnya (Tabel 6).

Rendemen minyak hasil pengempaan diperoleh oleh sejumlah faktor yang berhubungan dengan fisisan minyak terhadap bahan padat dalam biji. Dua fator ini antara lain adalah kadar air dan suhu pengempaan (Swern, 1982). Hickoc (1953) menunjukkan bahwa pada tingkat kadar air yang sama, peningkatan suhu pengempaan akan menunjukkan rendemen yang dihasilkan Peningkatan suhu pengempaan dari 65 °C ke suhu 135 °C meningkatkan rendemen minyak kemiri secara nyata (Tabel 6).

Table 6. Uji Beda Nyata Terkecil Sifat Minyak Keriri

<table>
<thead>
<tr>
<th>Suhu pengempaan (Pressing temperature), °C</th>
<th>65</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendemen (Yield)</td>
<td>48.403</td>
<td>61.470</td>
</tr>
<tr>
<td>Bilangan peroksidasa (Peroxide number)</td>
<td>12.532</td>
<td>9.555</td>
</tr>
<tr>
<td>Bilangan iod (Iod number)</td>
<td>97.273</td>
<td>11.810</td>
</tr>
</tbody>
</table>

Perlakuan pada biji (Treatment on seed)

<table>
<thead>
<tr>
<th>Kukus (Steam)</th>
<th>Sangrai (Dry-frying)</th>
<th>Taupa perla-</th>
<th>Kuan (Control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Peroxide number)</td>
<td>Bilangan iod (Iod number)</td>
<td>(Saponification number)</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. LSD test of candle nut oil properties

kerusakan minyak yang rendah dari minyak hasil perlakuan sangatri ini ditunjukkan oleh rendahnya bilangan peroksida yang dihasilkan.

IV. KESIMPULAN

1. Penelitian pendahuluan menunjukkan bahwa rendemen minyak hasil pengempaan kemiri yang masih utuh pada suhu kamar sedikit lebih tinggi dibandingkan pengempaan kemiri yang sudah dirajang. Peningkatan tekanan cair didingin ini juga meningkatkan rendemen minyak kemiri yang dihasilkan. Peningkatan lama pengempaan biji kemiri yang sudah dirajang pada suhu 100°C dan telah mendapat perlakuan khusus atau sangat sebelum dikemuka cenderung meningkatkan rendemen minyak kemiri yang dihasilkan.

3. Perlakuan sangatri pada biji sebelum dikemuka menghasilkan kualitas minyak kemiri yang lebih baik dibandingkan kualitas minyak hasil perlakuan khusus atau tanpa perlakuan, yaitu ditunjukkan oleh nilai bilangan iod yang tinggi, sehingga minyak kemiri ini dimungkinkan untuk digunakan sebagai minyak pengeran.

DAFTAR PUSTAKA

FINANCIAL ANALYSIS OF PUJON SOCIAL FORESTRY PROJECT IN EAST JAVA, INDONESIA
(Analisis Finansial Proyek Perhutanan Sosial Pujon, Jawa Timur, Indonesia)

Oleh/By:
Kirsfi unti Linda Ginoga

Riwayatan

Hasil analisis finansial menunjukkan bahwa dengan tingkat discount rate 16 persen, proyek PS memberikan nilai net present value (NPV) pada Perum Perhutani sekitar Rp 2.9 juta per hektar (harga tahun 1993). Surplus finansial ini terutama diperoleh dari hasil penjualan tanaman pokok (Agathis lorraine). Selanjutnya tingkat penerimaan finansial untuk Perum Perhutani diperkirakan sebesar 27.8 persen. Karena itu, diperoleh nilai NPV sebesar Rp 7.2 juta per hektar, jauh di atas nilai NPV yang diterima oleh pihak Perum Perhutani. Tetapi dengan tingkat perolehan lahan rata-rata sebesar 0.19 ha per keluarga, dan dengan asumsi setiap keluarga terdiri dari 5 orang, pihak Perum Perhutani juga menyusun usulan atau Rp 56,000 per koperan. Di samping itu, pendapatan petani per tahun dari proyek PS juga tidak sibuk. Periode tahun ke 4 sampai tahun ke 9 dan tahun ke 21 hingga akhir proyek (tahun ke 35) merupakan masa krisis proyek, dari mana pendapatan petani.

I. INTRODUCTION

Social Forestry programs have been undertaken and studied in most developing countries (World Bank, 1989; Evan, 1992). Foley and Bernard (1984) mention that government social forestry policies have been implemented in more than 50 developing countries.

Social forestry has been the strategy for reforestation of the most degraded land in Java. The primary objective of this program is to induce sustainable forest management through successful reforestation efforts, as well as to induce forest protection by involving local participation in exchange for right to agricultural produce from forest land.

In principle Java's social forestry program include the development of an agroforestry system on dry and marginal lands in which nearby farmers are actively involved in its development and maintenance. The Java's social forestry project is funded and managed by Perum Perhutani or The State Forestry Corporation (henceforth SFC) which controls and manages Java's protection and production forest. This is because under Government Regulation No.15, 1972, which was renewed by Government Regulation No.36, 1986, SFC holds an exclusive right to manage and utilize all state forest in Java.

The Java's social forestry project reviewed here began in 1987 on 16.2 ha of marginal land in Kedungrejo Forest Resort. The project is carried out under tumpangsari (multiplying) scheme in which the main trees are planted along with other crops including food crops, perennial crops, fuelwood species, and other fodder. The main plantation in this project is Agathis lorraine while avocado and or coffee, Calliandra sp, and elephant grass are planted as the perennial, fuelwood and fodder grass species. The most common food crops grown are corn and shallot.

The objectives of this study is to analyze the implementation and impact of the Pujon Social Forestry Project in Kedungrejo Forest Resort in East Java. Specifically, the study analysis the financial evaluation of the social forestry program.

II. METHODOLOGY OF RESEARCH

A. Data Collection.

Fields research was undertaken in December, 1993. Primary data were obtained through an informal questionnaire survey of social forestry participants. Thirty one respondents were selected of 93 participating farmers, of which ten respondent join the project in
1987, and the others in 1992. Secondary data and other information were gathered from existing records in district, provincial and national offices, including project records dating from 1987. The responses obtained from fieldwork were coded and stored on computer disk using Lotus 123 spreadsheets.

Because this study evaluates an on-going project, i.e., in the 6th and 2nd year of the two plots of the project, the input and output data involve both actual and observation data. For food crops farming, the data were obtained from project records and farmers interviews. For coffee and avocado, data for the 6th and 2nd year of the project (i.e., in 1993) were obtained from farmer interviews. These data, together with other technical information available from De Graaf and Dwiiwarsito (1980), were then employed as a basis for estimating input and output data for coffee and avocado in other years.

For the main plantation (Agathis loranthifolia), fuelwood tree (Calandra), and fodder grass (Elephant grass), technical and phisical specifications, for example, number of cuttings for fodder, were obtained from field observation and farmer interview. On the basis of this information, and additional technical information available from Sudarmo (1956) and Reforestation Team (1971), input and output data for Agathis loranthifolia were estimated.

B. Financial Analysis

As the project involves two different agents, i.e., SFC and farmers under a partnership contract, this study analysis the financial performance of the project from three different units of analysis, i.e., the project as whole, the project from the viewpoint of SFC, and the project from the viewpoint of participating farmers. This disaggregation will enable the author to analyze the project financial benefits accrued to each agent involved.

The reasons for doing a financial analysis in this study is mainly to examine the financial feasibility of the project on the basis of actual costs and revenues according to market princes. This will then facilitate an analysis about financial sharing of both project cost and revenues between SFC and farmers.

In this financial analysis there are three categories of receipt that are treated in specific ways described below:

a. Land rent. Farmers have to pay nothing to SFC for the plot they cultivate, even though in return they have to spend their labor time for the maintenance of the main plantation. This land rent is not ac-

Counted as a financial cost for SFC because, by law, SFC is granted a fee simple ownership on every forested land in Java by the Government. Thus, SFC pays no thing for the acquirement of the reforestation plot.

b. Famil labor. Time spend by participating farmers and their family in the project is not monetized in financial analysis. This is because both SFC and farmers did not in fact spend any rupiah for family labor.

c. Subsidies. SFC subsidies farmers with planting materials i.e., coffee, avocado, calandra and grass fodder, and fertilizer needs for foodcrops farming in the first year and half of the needs in the second year. These receipts are included in the analysis as costs borne by the SFC and the project as a whole, but is excluded from the costs borne by farmers. In other words, these subsidies make up a certain portion of farmer's net financial benefit, i.e., revenues minus costs.

C. Discount Rate

There are two school of thought regarding the selection of a social discount rate, one based on the social opportunity cost of capital (SOCC), and one the social time preference rate (STRP). The primary argument for the SOCC is that society would not benefit if resources that would have produces a higher rate of return in an alternative use, either in the public or private sector, were drawn into uses where they yield a lower rate of return (Baumol, 1988). Given that the rates of return in the private sector are usually higher than those in the public sector, no public investment should therefore be undertaken unless the investment produces a rate of return higher than the return obtained in the private sector. Thus, a social discount rate should be chosen such that it indicates positive for a public project if and only if its gross benefits exceeds its opportunity costs in the private sector.

The STPR is based on the view that individuals face a trade-off between present and future consumption. Thus, a discount rate should represent a rate at which individuals are prepared to substitute future for present consumption.

In this study SOCC approach is followed. The pretax rate of return on capital of twenty seven Indonesian companies listed in the Jakarta Stock Exchange in 1993 exhibit a median of 23.8 per cent. It is then proposed that the "best guess" for a nominal social discount rate is in the order of 24 per cent. Given an average annual inflation rate of 7.7 per cent during 1985-1991, a real discount rate of 16 per cent is proposed.
III. RESULTS AND DISCUSSIONS

A. Costs and Commodity Components

1. Costs of Establishment

These cost items refer to all costs associated with the establishment of the Pujon Social Forestry Project. The term costs of establishment is used because, unlike the usual "investment cost" which occurs only in the initial years of a project, these costs span the entire life of the main plantation, i.e., 35 years. That is, they are fixed or overhead costs.

In financial terms, all costs of establishment are incurred by SFC. Farmers contribute their unpaid family labor for the establishment of the project, while no hired laborer are employed. Details of this costs are presented in Table 1.

Table 1. Estimated Financial Costs of Establishment (Rp/Hectare), 1993 Prices

<table>
<thead>
<tr>
<th>Financial (Finansial)</th>
<th>2</th>
<th>3</th>
<th>4-35</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFC (Perum Perhutani)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting materials (Bibit tanaman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Planting (Tanaman bibit bawang)</td>
<td>256,950</td>
<td>0</td>
<td>10,000</td>
<td>0</td>
<td>266,950</td>
</tr>
<tr>
<td>Replanting (Penanaman ulang)</td>
<td></td>
<td>7,240</td>
<td>0</td>
<td>0</td>
<td>7,240</td>
</tr>
<tr>
<td>Fertilizers (Pupuk)</td>
<td>260,750</td>
<td>133,750</td>
<td>0</td>
<td>0</td>
<td>394,500</td>
</tr>
<tr>
<td>Labor (Tenaga kerja)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration and management (Administrasi dan manajemen)</td>
<td>35,000</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
<td>375,000</td>
</tr>
<tr>
<td>Other materials (Bahan lain)</td>
<td>175,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>345,000</td>
</tr>
<tr>
<td>Total costs (Total biaya)</td>
<td>727,700</td>
<td>155,990</td>
<td>25,000</td>
<td>15,000</td>
<td>1,388,690</td>
</tr>
<tr>
<td>Present Value of costs (Nilai sekarang dari biaya)</td>
<td>818,812</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Indicates the following:

a. The present value of these costs in financial terms amount to Rp 818,812, in 1993 prices.

b. Purchase of planting materials is shown not to be the largest portion of these establishment costs. The costs of planting materials makes up only about 19 per cent of the establishment costs in financial terms. The costs associated with fertilizers, administration and management, and provision of other materials account for the largest portion of the establishment costs.

2. Food Crops

Four common food crop farming systems were observed in the project plots, that is:

1. Two shallot crops in Years 1 and 2, and one shallot crop in Year 3 (35 per cent),
2. Two shallot crops and one corn in Years 1 and 2, and one shallot crop in Year 3 (23 per cent),
3. Two corn crops and one shallot crops in Years 1 and 2, and one corn crop in Year 3 (12.9 per cent), and
4. Three corn crops in Years 1 and 2, and one corn crop in Year 3 (12.9 per cent).

The annual costs and revenues of food crop farming are presented in Table 2. It should be noted that the financial surplus to the farmers in year 1 is higher than that in year 2, and more than that in year 3. This is because SFC halves its fertilisers subsidies in the second year, and because the shading problem means only one food crop can be cultivated in the third year.

The most beneficial cropping pattern appears to be the second pattern, i.e., two shallot crops in years 1 and 2, and one shallot crop in year 3, which recorded a total surplus of Rp 2,337,372 per ha over the three years. Cropping pattern # 4, i.e., three corn crops in years 1 and 2, and one corn crop in year 3 is shown to be the least beneficial one. It produced an economic surplus of about Rp 655,362 per ha over the three years. Given its relatively low surplus, it appears that
this pattern is chosen because of technical constraints faced by some farmers, for example, lack of expertise to grow shallot.

Table 2. Annual Costs and Revenue for Food Crop (Rp/Hectare) .993 Prices

<table>
<thead>
<tr>
<th>Year (Tahun)</th>
<th>Financial (Nilai)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Crop Pattern #1 (Pola Tanam #1)</td>
<td>5,292,088</td>
</tr>
<tr>
<td>Seed, fertilizers, and other non labor costs</td>
<td>3,080,000</td>
</tr>
<tr>
<td>(Bibit, pupuk, & lain-lain, selain biaya tenaga kerja)</td>
<td>1,732,088</td>
</tr>
<tr>
<td>Family labor (Tenaga kerja keluarga)</td>
<td>480,000</td>
</tr>
<tr>
<td>Hired labor (Tenaga kerja yang diupahkan)</td>
<td>1,732,088</td>
</tr>
<tr>
<td>Surplus (Hasil bersih)</td>
<td>5,815,279</td>
</tr>
<tr>
<td>Seed, fertilizers, and other non labor costs</td>
<td>3,103,400</td>
</tr>
<tr>
<td>(Bibit, pupuk, & lain-lain, selain biaya tenaga kerja)</td>
<td>0</td>
</tr>
<tr>
<td>Family labor (Tenaga kerja keluarga)</td>
<td>555,000</td>
</tr>
<tr>
<td>Hired labor (Tenaga kerja yang diupahkan)</td>
<td>2,155,879</td>
</tr>
<tr>
<td>Surplus (Hasil bersih)</td>
<td>3,692,427</td>
</tr>
<tr>
<td>Seed, fertilizers, and other non labor costs</td>
<td>1,856,800</td>
</tr>
<tr>
<td>(Bibit, pupuk, & lain-lain, selain biaya tenaga kerja)</td>
<td>0</td>
</tr>
<tr>
<td>Family labor (Tenaga kerja keluarga)</td>
<td>392,000</td>
</tr>
<tr>
<td>Hired labor (Tenaga kerja yang diupahkan)</td>
<td>1,713,627</td>
</tr>
<tr>
<td>Surplus (Hasil bersih)</td>
<td>1,569,575</td>
</tr>
<tr>
<td>Seed, fertilizers, and other non labor costs</td>
<td>70,200</td>
</tr>
<tr>
<td>(Bibit, pupuk, & lain-lain, selain biaya tenaga kerja)</td>
<td>0</td>
</tr>
<tr>
<td>Family labor (Tenaga kerja keluarga)</td>
<td>228,000</td>
</tr>
<tr>
<td>Hired labor (Tenaga kerja yang diupahkan)</td>
<td>12,713,575</td>
</tr>
</tbody>
</table>

3. The Main Plantation (Agathis laranifolia)

Resin production is neglected in this study, because Agathis laranifolia produce resin of a low quality at a very low volume (Reforestation Team, 1971). Hence, only roundwood and fuelwood entered into the calculation. According to the contract, SFC is the only party allowed to harvest the roundwood. However, matters are less clear for fuelwood, but given the relatively low quality of fuelwood obtained from Agathis laranifolia, it is assumed that SFC allows farmers to collect the entire fuelwood production. The main plantation is not directly fertilized. The plantations benefits from the fertilizing of food crops, coffee, and fodder grass. In addition, farmers are to spend some amount of labor time for the maintenance of the main plantation.

4. Calliandra

Calliandra is another source of fuelwood for participating farmers. As in the case of the main plantation, it is assumed that SFC allows farmers to collect the entire fuelwood production of calliandra. Like the main plantation, the calliandra receives no direct fertilizing but it benefits from the fertilizing of other crops.

Table 4, presents the annual costs and revenue for calliandra. As is the case of the main plantation, the financial surpluses obtained from calliandra are relatively low compared to those obtained from food main plantation varies from Rp 1.3 to 18.8 million per hectare. It should be noted that SFC gains more than 95 per cent of surpluses produced by the main plantation.
crops. It can even be as low as Rp 92,500 per year in financial terms in years 10 to 12.

Table 3. Estimated Costs and Revenue for Agathis Loranifolia

<table>
<thead>
<tr>
<th>Financial (Finansial)</th>
<th>Year (Tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>SFC (Perum Perhutani)</td>
<td></td>
</tr>
<tr>
<td>Roundwood (Kayu Bakat), m³/ha</td>
<td>0</td>
</tr>
<tr>
<td>Output value (Nilai Hasil), Rp</td>
<td>0</td>
</tr>
<tr>
<td>Harvesting Costs (Biaya Permanen), Rp</td>
<td>0</td>
</tr>
<tr>
<td>Surplus (Hasil Bersih), Rp</td>
<td>0</td>
</tr>
</tbody>
</table>

Farmers (Petani Peserta)

Fuelwood (Kayu Bakat), m³/year	0	0	5.2	10.8	16.3	21.1	25.4	75.6
Output value (Nilai Hasil), Rp	0	0	48,318	99,564	150,811	194,736	235,001	699,146
Male Family Labour (Tenaga K-ja laki-laki Keluarga)	15	5	5	5	5	5	5	5
Maintenance (Pemeliharaan), days	0	0	16	33	51	65	79	234
Harvesting (Panen), days	0	0	0	0	0	0	0	0
Family Labour (Tenaga kerja Kenanga), Rp	0	0	0	0	0	0	0	0
Surplus (Hasil Bersih), Rp	0	0	48,318	99,564	150,811	194,736	235,001	699,146

Project/Proyek

Roundwood (Kayu Bakat), m³/year	0	0	20.9	43.1	65.2	84.2	101.6	302.3
Fuelwood (Kayu Bakat), m³/year	0	0	5.2	10.8	16.3	21.1	25.4	75.6
Output Value (Nilai Hasil), Rp	0	0	1,425,249	2,936,877	448,505	5,744,186	6,931,894	20,622,923
Harvesting Cost (Biaya Panen), Rp	0	0	129,544	266,940	404,335	522,103	630,057	1,874,466
Family Labour (Tenaga kerja Kenanga), Rp	0	0	0	0	0	0	0	0
Surplus (Hasil Bersih), Rp	0	0	1,295,705	2,669,377	4,044,169	5,222,083	6,301,837	18,748,458

Table 4. Estimated Financial Costs and Revenues for Callianandra, Per Hectare, 1993 Prices

<table>
<thead>
<tr>
<th>Financial (Finansial)</th>
<th>Year (Tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-3</td>
</tr>
<tr>
<td>Farmers (Petani Peserta)</td>
<td></td>
</tr>
<tr>
<td>Fuelwood (Kayu Bakat), m³/year</td>
<td>0</td>
</tr>
<tr>
<td>Output value (Nilai Bersih), Rp</td>
<td>0</td>
</tr>
<tr>
<td>Male Family Labour (Tenaga kerja laki-laki Keluarga)</td>
<td></td>
</tr>
<tr>
<td>Maintenance (Pemeliharaan), days</td>
<td>28</td>
</tr>
<tr>
<td>Harvesting (Panen), days</td>
<td>0</td>
</tr>
<tr>
<td>Family Labour (Tenaga Kerja Keluarga), Rp</td>
<td>0</td>
</tr>
<tr>
<td>Surplus (Hasil Bersih), Rp</td>
<td>0</td>
</tr>
</tbody>
</table>

5. Coffee and Avocado

Table 5 and table 6 present the annual costs and revenue per hectare for coffee and avocado. However, this statement is indicative only, because it is not directly fertilized. It benefits from the fertilizing of coffee from years 1 to 15, and from that of fodder crops and fodder grass from year 1 to 5.

Coffee begins to produce a surplus in year 4, and its surpluses vary from Rp 30,790 to Rp 178,600 in financial terms. In contrast, avocado produces a much larger surplus, reaching as high as Rp 1.7 in years 16 to 20 in financial terms.

6. Fodder Grass

Table 5 and table 6 present the annual costs and revenue per hectare for coffee and avocado. However, this statement is indicative only, because it is not directly fertilized. It benefits from the fertilizing of coffee from years 1 to 15, and from that of fodder crops and fodder grass from year 1 to 5.

Coffee begins to produce a surplus in year 4, and its surpluses vary from Rp 30,790 to Rp 178,600 in financial terms. In contrast, avocado produces a much larger surplus, reaching as high as Rp 1.7 in years 16 to 20 in financial terms.

The type of fodder grass planted is elephant grass (Pennisetum purpureum). As the sub-district of Pujon is one of the milk production center in East Java, fodder plantation has a significant economic value for participating farmers. SFC allows the farmers to cultivate fodder during the first five years of the project, especially around the edge and along each strip between the trees. Table 6 shows the annual unit costs and revenue for fodder grass, during the five years of...
fodder production the annual surpluses generated vary from a low of Rp 4,000 to a high of Rp 517,000 financial terms.

comes solely from sales of roundwood obtained from Agathis loranthifolia and is surplus over the total costs of establishment.

Table 5. Estimated Annual Costs and Revenues Per Hectare For Coffee and Avocado
Tabel 5. Perkiraan Biaya dan Pendapatan Tahunan per Hektar da i Kopi dan Alpukat

<table>
<thead>
<tr>
<th>Financial (Financial)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Year (Tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7-9</td>
</tr>
<tr>
<td>Coffee/Kopi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial (Financial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmers (Petani Peserta)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,500</td>
</tr>
<tr>
<td>Output Value (Nilai Hasil), Rp</td>
<td>5,500</td>
<td>10,380</td>
<td>15,850</td>
<td>1,710</td>
</tr>
<tr>
<td>Fertilisers (Pupuk), Rp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Family Labour (Tenaga Kerja Keluarga), Rp</td>
<td>-5,500</td>
<td>-10,380</td>
<td>-15,850</td>
<td>-10,790</td>
</tr>
<tr>
<td>Surplus (Hasil Bersih), Rp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Avocado/Alpukat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial (Financial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmers (Petani Peserta)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Output Value (Nilai Hasil), Rp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fertilisers (Pupuk), Rp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Family Labour (Tenaga Kerja Keluarga), Rp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surplus (Hasil Bersih), Rp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6. Annual Units Costs and Revenue for Fodder Grass (Rp/Hectare), 1993 prices

<table>
<thead>
<tr>
<th>Financial (Financial)</th>
<th>1</th>
<th>Year (Tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Farmers (Petani Peserta)</td>
<td>4,000</td>
<td>88,000</td>
</tr>
<tr>
<td>Output Value (Nilai Hasil), Rp</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fertilisers (Pupuk), Rp</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Family Labour (Tenaga Kerja Keluarga), Rp</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surplus (Hasil Bersih), Rp</td>
<td>4,000</td>
<td>80,000</td>
</tr>
</tbody>
</table>

B. Financial Returns

Because it is almost impossible to apportion joint costs associated with joint use of fertilizers, labor time, and establishment costs, a partial financial analysis for each crop is not undertaken here, though an indicative comparison between surpluses gained by each crop is presented at the end of this section. The analysis focused mainly on the project’s financial returns and its distribution between SFC and farmers. In computing these returns, financial surpluses gained from each crop pattern of the food crop are weighted on the basis of the distribution of each pattern.

1. Financial Return to SFC

At a discount rate of 16 per cent, it is estimated that during its life, i.e., 35 years, the project generated a net present value amounting to about Rp 2.9 million per hectare at 1993 prices (Table 7). This financial surplus

The financial rate of return for SFC is estimated to be about 27.8 per cent, well above the social opportunity costs of capital of 16 per cent. Hence, from the SFC point of view the project appears to be financially profitable. This is a promising indication given that SFC gains only roundwood from the project, while the other produce of the project, i.e., corn, shallot, fuelwood, coffee, avocado, and fodder grass, is allocated to the participating farmers. Also, SFC has to financially incur all expense associated with project establishment.

It must be remembered, however, that SFC has to spend nothing for farmers’ labor used for project establishment and the maintenance of the main plantation. Had these labor inputs been paid for in cash, the net present value would drop by about 9 per cent to Rp 2,638,026 and the rate of return would decline to 25.4 per cent (Table 8). In other words farmers involvement in the project is shown to be financially beneficial for SFC because it increases the project’s financial surplus and rate of return.

Table 8. Summary Results of Financial Analysis

<table>
<thead>
<tr>
<th></th>
<th>Year (Tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NPV (Rp)</td>
</tr>
<tr>
<td>SFC (Persen Perusahaan)</td>
<td>600,000</td>
</tr>
<tr>
<td>If farmers are paid wages for labour used for project establishment (Jika petani diupah untuk tenaga yang terpakai untuk pengembangan proyek)</td>
<td>83,000</td>
</tr>
<tr>
<td>Farmers (Petani Peserta)</td>
<td></td>
</tr>
<tr>
<td>Project (Proyek)</td>
<td>517,000</td>
</tr>
<tr>
<td>Actual conditions (Kondisi sekarang)</td>
<td></td>
</tr>
<tr>
<td>If land cost is taken into account (Bila Sewa Lahan dihitung)</td>
<td></td>
</tr>
<tr>
<td>Low cost of land (Sewa lahan rendah)</td>
<td></td>
</tr>
<tr>
<td>Medium cost of land (Sewa lahan sedang)</td>
<td></td>
</tr>
<tr>
<td>High cost of land (Sewa lahan tinggi)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1) Net Present Value at discount rate of 16%
2) Land rent is assumed to represent the cost of land. It should be noted, however, that this cost does not necessarily represent the "true" opportunity cost of land.

Figure 1. Flows of Financial Surpluses Gained by Farmers (Rp), 1993 Prices

Gambar 1. Aliran Surplus finansial yang diperoleh Petani, Harga Tahun 1993

2. Financial Return to Farmers

Table 8 shows that farmers gain a financial net present value of Rp 7.2 million from the project. This value is well above the net present value per hectare gained by SFC. The financial rate of return of the project for farmers cannot be computed here because, as farmers spend nothing for project investment nor for land rent, this has resulted in a high positive value of net surpluses in the earlier years of the project. In turn this presents the computation of the internal rate of return (IRR) because no discount rate will make the net present value equal zero.
Given that farmers involvement has contributed to increase the survival rate of the main plantation, project sustainability seems to be greatly dependent to farmers active involvement in the project. It is likely that farmers would be willing to spend more labor if the project generates adequate and continuing financial surpluses for them. This argument gives significance to an analysis of the annual flows of financial surpluses gained by participating farmers, as shown in Figure 1.

Several interesting features can be noted in Figure 1. First, despite the high net present value, in practice the actual financial surplus gained by the farmers is not very high. Given the average land distribution of 0.19 hectare per family, and assuming a family size of 5 persons per family, the farmers gain only about Rp 280,000 per family or Rp 56,000 per capita in the first year. This is far below the average per capita income of about US.$ 570 or Rp 1,140,000 in 1992.

Second, the project does not guarantee a steady annual financial surplus for the farmers (Figure 1). The period from year 4 to 9 appears to be critical for the project's sustainability. This is because in these years farmers financial surpluses drop very dramatically compared to those received in the first three years. In years 4 to 9 farmers have to rely mainly on fodder grass and avocado as their income source to replace the income loss due to the termination of food crop farming. The other crops, i.e., *Agathis loranrifolia*, calliandra, and coffee produce a relatively low financial surplus. During the period from years 10 to 20 farmers financial surpluses increase significantly, reaching the peak in year 15 with a surplus of about Rp 76,000 per capita. However, from years 21 to the end of the project, farmers financial surpluses decline dramatically to a level below Rp 10,000 per capita.

These facts call for further improvement in the project design so as to increase the project’s sustainability. Of particular importance in this case is to develop a planting scheme which is capable of ensuring a steady financial surplus for the farmers during years 4 to 9, and years 21 to 35.

3. Financial Return to Project

The total financial surplus of the project is shown to be Rp 10.1 million per ha in 1993 prices at a discount rate of 16 per cent. As with the case of the rate of return to farmers, the financial rate of return for the project can not be computed here because of the high positive return in the earlier years.

It should be noted that, because SFC acquires the project land by government decree, the above financial surpluses are computed without taking into account the costs of land.

4. The Rank of Financial Surpluses

The Relative importance of each crop as an income source can be indicatively shown, assuming that joint costs are distributed evenly to each crop. Table 10 shows the food crops, avocado and fodder grass appear to be the most important crops for farmers in financial terms. The main tree crop is shown to be the least important. For the project as a whole, however, the most important crop in financial term is the main plantation, followed by food crops and avocado.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Farmers</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Food crops</td>
<td>Main Plantation</td>
</tr>
<tr>
<td>2</td>
<td>Avocado</td>
<td>Food Crops</td>
</tr>
<tr>
<td>3</td>
<td>Fodder grass</td>
<td>Avocado</td>
</tr>
<tr>
<td>4</td>
<td>Coffee</td>
<td>Fodder grass</td>
</tr>
<tr>
<td>5</td>
<td>Calliandra</td>
<td>Coffee</td>
</tr>
<tr>
<td>6</td>
<td>Main Plantation</td>
<td>Calliandra</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

This study has evaluated the financial analysis of the Pujon Social Forestry Project in Kedungrejo Forest Resort, Malang District. The project is funded and managed by Perum Perhutani (The State Forestry Corporation of Java, SFC) which controls and manages Java’s production and protection forests.

At areal discount rate of 16 per cent, it is estimated that the project generates a net present value for SFC of about Rp 2.9 million per hectare at 1993 prices. This financial surplus comes solely from sales of ronwood obtained from *Agathis loranrifolia*. This financial rate of return for SFC is estimated to be about 27.8 per cent. Hence, form SFC point of view the project appears to be financially feasible. Farmers gain a net present value of 7.2 million pre ha from the project, well above the net present value per hectare gained by SFC. However, in practice the actual financial surplus gained by the farmers is not very high. Given the average land distribution of 0.19 ha per family, and assuming a family size of 5 persons per family, the farmers gain only about Rp 280,000 per family or Rp 56,000 per capita in the first year. Moreover, the project does not guarantee a steady annual financial surplus for the farmers. The period from years 4 to 9 and years 21 to end of the project appear to be critical for the project sustainability.
The total financial surplus of the project was estimated to be about Rp 10.1 million. Further calculation showed that the project would be financially feasible even if SFC had to pay for land rental.

The following specific suggestions arise from this study:

1. SFC needs to increase the scale of farmer's plots so as to increase the actual financial surpluses enjoyed by each farm family. An increase in land holding in turn increase the per capita financial surpluses.

2. To increase the project sustainability, it is of particular importance to develop a farming scheme which is capable of ensuring a steady financial surplus for the farmers during the periods of years 4 to 9, and years 21 to 35. SFC may consider allowing farmers to recultivate food crops, fodder grass, and others crops during years 21 to 35 so as to provide a steady income flows for the farmers.

REFERENCES

PENGARUH PENGUKUSAN DAN PER/JANGAN DAUN GAMBIT
(Uncaria gambir ROXB) TERHADAP MUTU EKSTRAK GAMBIT
(The effect of steaming duration and chopping size of gambier leaves
(Uncaria gambir ROXB) on quality of gambier extract)

Olch/By:
Zulnely & Abdul Halim Lukman

Summary

This experiment is to study the effect of steaming duration and chopping sizes of gambier leaves (Uncaria gambir ROXB) on both yield and quality.

The steaming duration of the samples were conducted at 30, 40, 60 minutes and the chopping sizes of the sample consisted of 0.5-1 cm, 2-3 cm, 4-6 cm, and unchopping. The results were analyzed using the factorial design with two replications and the difference between means were tested with multiple range Duncan's test.

The results showed that the steaming duration and the chopping sizes had a significant effect on the yield, catechin content, insoluble matter and insoluble matter in alcohol. Combination of 0.5-1 cm chopping size and 30 minutes steaming duration was the best treatment. This combination produced 10.34 % yield of gambier ext act, 75.82 % catechin content, 11.34 % moisture content, 4.75 % ash content, 4.86 % insoluble matter, and 12.03 % insoluble matter in alcohol.

I. PENDAHULUAN

Gambar adalah getah hasil ekstraksi daun dan ranting tanaman Uncaria gambir ROXB yang termasuk famili Rubiaceae. Tanaman ini merupakan tanaman semak yang memanfaat dan tumbuh baik pada ketinggian 900 meter dari permukaan laut. Gambir juga merupakan salah satu komoditas ekspor non migas Indonesia yang mempunyai manfaat sangat banyak seperti untuk bahan penyamak kulit, pengawet, ramuan cat, kosmetik, obat tradisional dan bahan industri farmasi (Burkhill, 1935).

Proses ekstraksi daun dan ranting tanaman gambir di Indonesia masih dilakukan secara sederhana oleh unit pengolahan tradisional. Biasanya dilakukan dengan cara merebus daun dan ranting tanpa dilakukan perajangan lebih dahulu, lalu dikemuk (ditumbuk), sehingga keluar getahnya. Ekstraksi gambir secara tradisional ini hanya dapat menghasilkan rendemen dan mutu gambir yang rendah dan beragam, yang menyebabkan banyak tidak terpenuhinya permintaan negara pengimpor.

Berdasarkan hal di atas, dicoba melakukan penelitian mengenai pengaruh perajangan dan lama pengukusan pada ekstraksi daun gambir terhadap rendemen dan mutu gambir yang dihasilkan. Dengan penelitian ini diharapkan akan diperoleh kondisi ekstraksi terbaik dari daun tanaman Uncaria gambir ROXB.

II. BAHAN DAN METODE

Bahan yang digunakan dalam penelitian ini adalah daun gambir (Uncaria gambir ROXB). Daun ini diekstraksi getahnya secara mekanis dengan menggunakan mesin kempa hidrolis pada tekanan kerja 200 kg/cm², untuk memperoleh cairan gambir. Kemudian cairan gambir dikeringkan pada suhu 50 - 60°C, sampai diperoleh gambir kering.

Perlakuan yang diberikan sebelum pengempaan daun ialah perajangan dan pengukusan. Ukuran perajangan daun yang digunakan 0.5 - 1 cm, 2 - 3 cm, 4 - 6 cm dan tidak dirajang. Sedangkan untuk lama pengukusan digunakan waktu 30 menit, 45 menit, 60 menit dan 75
menit. Untuk setiap kombinasi perlakuan dikerjakan sebanyak dua kali.

Dari gambar kering yang diperoleh dilakukan bebera
analis menurut Standar Perdagangan (Departemen Perdagangan, 1985). Analisis tersebut meliputi penentuan kadar katechin (SP-SMP-337-1585), kadar air (SP-SMP-9-1975), kadar abu (SP-SMP-12-1975), kadar bahan tidak larut dalam air dan kadar bah-an tidak larut dalam alkohol (SP-SMP-338-1985). Untuk menge-
tahui pengaruh perajangan dan pengukusan dari ekstraksi daun gamib dibuat sidik ragam penurut Rancangan Acak Lengkap Fak-
torial, dan dianalisa dengan uji Duncan (Montgomery, 1984).

III. HASIL DAN PEMBAHASAN
A. Rendemen

Pada Tabel 1 terlihat bahwa rendemen gambar yang
diperoleh berkisar antara 7,79 persen sampai 3,34 persen.

Kombinasi perlakuan ukuran perajangan 0,5 - 1 cm
dengan lama pengukusan 30 menit menghasilkan rendemen tertinggi, sedangkan rendemen terendah diperoleh pada kombinasi bahan tidak dirajang dengan lama pengukusan 30 menit. Rendemen gambar yang dihasilkan ini lebih besar kadarnya bila dibandingk-
kan dengan rendemen gambar hasil ekstraksi cara pengukusan selama 5 - 15 menit (Tabel 4).

Hasil sidik ragam (Tabel 3) menunjukkan bahwa
ukuran perajangan dan lama pengukusan serta interaksi keduaany berpengaruh nyata terhadap rendemen gambar yang dihasilkan.

Tabel 1. Rendemen ekstrak gambar (%) pada bebera
rapa tingkat ukuran perajangan dan lama
pengukusan

| Table 1. The yield of extracted gamber (%) on several
levels of chopping sizes and steaming durations |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ukuran perajangan (Chopping size)</td>
</tr>
<tr>
<td>(cm)</td>
</tr>
<tr>
<td>0,5 - 1</td>
</tr>
<tr>
<td>2 - 3</td>
</tr>
<tr>
<td>4 - 6</td>
</tr>
<tr>
<td>Tidak dirajang (Unchopping)</td>
</tr>
</tbody>
</table>

Dari hasil uji selang berganda Duncan, diketahui bahwa lama pengukusan 30 menit menghasilkan rendemen yang tidak berbeda dengan lama pengukusan 75 menit (Lampiran 2), dan bahan yang dirajang menghasilkan rendemen yang nyata lebih besar dibandingkan dengan bahan tanpa dirajang (Lampiran 3).

Tingginya rendemen yang dihasilkan dari bahan yang dirajang disebabkan oleh terjadinya proses hidrodifusi pelarut ke dalam vakuola sel yang mengandung getah lebih mudah dan merata. Akibatnya terjadi pembengkakan pada sel sehingga sel lebih mudah pecah dan getah yang diperoleh dari ekstraksi lebih banyak (Guenther, 1972).

Uji selang berganda Duncan untuk interaksi lama
pengukusan dan ukuran perajangan (Lampiran 4), menunjukkan bahwa kombinasi perlakuan lama pengukusan 30 menit dan ukuran perajangan 0,5 - 1 cm, menghasilkan rendemen yang lebih tinggi dibandingkan kombinasi perlakuan lainnya. Tetapi tidak
berbeda nyata jika dibandingkan dengan kombinasi perlakuan lama pengukusan 45 menit dengan ukuran perajangan 2 - 3 cm, dan kombinasi lama pengukusan 60 menit dengan ukuran perajangan 4 - 6 cm.

B. Kadar Katechin

Kandungan katechin dalam gambar merupakan salah satu faktor yang menentukan mutu gamib tersebut. Semakin tinggi kadar katechin, mutu gamib mak

Dari hasil percobaan (Tabel 2) diperoleh kadar katechin pada gamib berkisar antara 65,06 persen sampai 75,82 persen. Kadar katechin tertinggi diperoleh pada kombinasi ukuran perajangan 0,5 - 1 cm dengan lama pengukusan 30 menit. Sedangkan kadar katechin terendah diperoleh pada kombinasi daun tidak dirajang dengan lama pengukusan 30 menit. Kadar katechin yang diperoleh ini memenuhi standar mutu yang ada pada Departemen Perdagangan (Lampiran 1), dan juga lebih besar bila dibandingkan dengan hasil ekstraksi gambar cara pengukusan selama 5 - 15 menit (Tabel 4).

Tingginya kadar katechin pada daun yang dirajang karena makin luasnya bidang kontak antara bahan dengan pelarut akibatnya uap air mudah berdifusi ke dalam sel (hidrodifusi), sehingga efektivitas pelarut semakin baik dan katechin yang terdapat di dalam sel

Dari hasil sidik ragam (Tabel 3) diketahui bahwa ukuran perajangan dan lama pengukusan serta interaksi keduaany berpengaruh nyata terhadap kadar katechin. Dari uji Duncan untuk kadar katechin didapatkan bahwa lama pengukusan daun 30 menit tidak berbeda dengan lama pengukusan 75 menit (Lampiran 2). Begitu juga untuk ukuran perajangan daun sebesar 0,5 - 1 cm menghasilkan kadar katechin yang nyata lebih besar dibandingkan dengan bahan tanpa dirajang (Lampiran 3).
Tabel 2. Hasil analisis kualitas gambir

Table 2. Analysis results of gambier quality

<table>
<thead>
<tr>
<th>Ukuran perajangan (Chopping size), cm</th>
<th>Lama pengukusan (Steaming duration), min</th>
<th>Kadar katechin (Catechin content), %</th>
<th>Kadar air (Moisture content), %</th>
<th>Kar & abu (Ash content), %</th>
<th>Bahan tidak larut dalam air (Insoluble matter), %</th>
<th>Bahan tidak larut dalam alkohol (Insoluble matter in alcohol), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5 - 1</td>
<td>30</td>
<td>75,82</td>
<td>11,34</td>
<td>4.75</td>
<td>4.86</td>
<td>12,03</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>73,61</td>
<td>11,26</td>
<td>5.99</td>
<td>4,89</td>
<td>12,56</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>71,65</td>
<td>10,33</td>
<td>5,46</td>
<td>4,87</td>
<td>13,16</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>68,98</td>
<td>10,96</td>
<td>6,20</td>
<td>5,70</td>
<td>13,47</td>
</tr>
<tr>
<td>2 - 3</td>
<td>30</td>
<td>69,04</td>
<td>10,51</td>
<td>5,11</td>
<td>4,62</td>
<td>11,83</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>74,47</td>
<td>10,20</td>
<td>4,67</td>
<td>4,27</td>
<td>12,50</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>68,57</td>
<td>10,32</td>
<td>5,77</td>
<td>4,52</td>
<td>13,61</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>66,25</td>
<td>10,18</td>
<td>5,92</td>
<td>5,25</td>
<td>13,44</td>
</tr>
<tr>
<td>4 - 6</td>
<td>30</td>
<td>68,05</td>
<td>9,47</td>
<td>5,01</td>
<td>3,62</td>
<td>11,77</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>71,95</td>
<td>11,02</td>
<td>5,12</td>
<td>3,50</td>
<td>12,39</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>74,42</td>
<td>10,58</td>
<td>5,42</td>
<td>3,64</td>
<td>13,41</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>70,38</td>
<td>10,00</td>
<td>5,75</td>
<td>3,91</td>
<td>13,32</td>
</tr>
<tr>
<td>Tidak dirajang (Unchopping)</td>
<td>30</td>
<td>65,05</td>
<td>9,48</td>
<td>4,89</td>
<td>3,96</td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>67,80</td>
<td>11,08</td>
<td>5,55</td>
<td>3,86</td>
<td>12,45</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>70,83</td>
<td>9,77</td>
<td>5,41</td>
<td>4,47</td>
<td>12,18</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>67,80</td>
<td>11,03</td>
<td>5,45</td>
<td>4,92</td>
<td>13,30</td>
</tr>
</tbody>
</table>

Dari uji selang berganda Duncan (Lampiran 4) menunjukkan kombinasi perlakuan lama pengukusan 30 menit dengan ukuran perajangan 0,5 - 1 cm menghasilkan kadar katechin yang lebih tinggi dibandingkan kombinasi perlakuan lainnya. Tetapi tidak berbeda nyata jika dibandingkan dengan kombinasi perlakuan lama pengukusan dengan ukuran perajangan 45 menit dan 0,5 - 1 cm, 45 menit dan 2 - 3 cm serta 60 menit dan 4 - 6 cm.

Tabel 3. Ringkasan sidik ragam rendemen dan kualitas gambir

Table 3. Summarised analysis of variance of gambier yield and quality

<table>
<thead>
<tr>
<th>Sifat (Properties)</th>
<th>F hitung (F calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perajangan (Chopping)</td>
<td>Pengukusan (Steaming)</td>
</tr>
<tr>
<td>Rendemen (Yield)</td>
<td>21,70 **</td>
</tr>
<tr>
<td>Kadar katechin (Catechin content)</td>
<td>24,11 **</td>
</tr>
<tr>
<td>Kadar air (Moisture content)</td>
<td>3,18</td>
</tr>
<tr>
<td>Kadar abu (Ash content)</td>
<td>0,56</td>
</tr>
<tr>
<td>Kadar bahan tidak larut dalam air (Insoluble matter)</td>
<td>12,20 **</td>
</tr>
<tr>
<td>Kadar bahan tidak larut dalam alkohol (Insoluble matter in alcohol)</td>
<td>5,19</td>
</tr>
</tbody>
</table>

Keterangan (Remarks) :
* = Nyata (Significant)
** = Sangat nyata (Highly significant)

Tab e 4. Analisis kualitas gambir hasil ekstraksi daun yang tidak dirajang *)

| Tabel 4. Analysis of gambier quality extracted from unchopped leaves *) |
|--------------------------|------------------|-------------------|
| raks teristik (C. aracteric) | Lama pengukusan (menit) (Steaming times/minutes) | 5 | 10 | 15 |
| Rendemen (Yield) | 6,78 | 6,49 | 6,10 |
| Kadar katechin (Catechin content) | 66,49 | 65,64 | 64,65 |
| Kadar air (Moisture content) | 8,56 | 8,71 | 8,84 |
| Bahan tak larut dalam air (Insoluble matter) | 6,54 | 6,32 | 6,01 |
| Bahan tak larut dalam alkohol (Insoluble matter in alcohol) | 8,56 | 8,71 | 8,84 |

Sumber (Source) : Sudibyo, Sait dan Loebis (1988)
Keterangan (Remark) : *) Daun dikukus sebelum diekstraksi (Before extracted, leaves was steamed)

C. Kadar Air

Penetapan kadar air pada gambir berguna untuk menentukan umur simpan dan daya tahan gambir terhadap serangan jamur. Semakin tinggi kadar air, maka gambir semakin mudah untuk terserang jamur.

Pada Tabel 2, terlihat bahwa kadar air gambir berkisar antara 9,47 persen sampai 11,34 persen. Kadar air terendah diperoleh pada kombinasi ukuran perajangan 4 - 6 cm dengan lama pengukusan 30 menit. Sedangkan kadar air tertinggi diperoleh pada kombinasi
perlakuan daun dengan ukuran rajangan 0,5 - 1 cm dengan lama pengukusan 30 menit. Kadar air yang diperoleh untuk semua kombinasi perlakuan ini masih di bawah syarat mutu yang diperbolehkan oleh Departemen Perdagangan yaitu maksimal 17%. Hasil sidik ragam (Tabel 3), menunjukkan bahwa kadar air gambir tidak dipengaruhi oleh ukuran rajangan daun, lama pengukusan maupun interaksi keduanya.

D. Kadar Abu

Berdasarkan hasil analisis (Tabel 2), dapat diketahui bahwa kadar abu gambir berkisar antara 4,55 persen sampai 6,20 peren. Kadar abu tertinggi dihasilkan pada kombinasi perlakuan ukuran perajangan 0,6 - 1 cm dan lama pengukusan 75 menit. Sedangkan kadar abu terendah diperoleh pada kombinasi daun tidak dirajang dan lama pengukusan 45 menit. Bila dilihat dari hasil analisis kadar abu, hampir semua gambir termasuk kualitas I dan hanya pada kombinasi ukuran perajangan 0,5 - 1 cm dengan lama pengukusan 75 menit yang termasuk kualitas II.

E. Kadar Bahan tidak Larut dalam Air

Pada Tabel 2, terlihat bahwa kadar bahan tidak larut dalam air berkisar antara 3,50 persen sampai 5,70 persen. Kadar tertinggi diperoleh dari kombinasi perlakuan ukuran perajangan 0,5 - 1 cm dan lama pengukusan 75 menit. Sedangkan kadar terendah diperoleh dari kombinasi ukuran perajangan 4 - 6 cm dan pengukusan 45 menit. Nilai kadar bahan tidak larut dalam air yang diperoleh, semuanya memenuhi persyaratan standar mutu gambir yakni maksimum 7 persen.

Dari hasil sidik ragam menunjukkan perajangan dan lama pengukusan berpengaruh nyata terhadap kadar bahan tidak larut dalam air, sedangkan interaksi keduanya tidak berpengaruh. Berdasarkan uji Duncan lama pengukusan 30 menit tidak berbeda nyata dengan lama pengukusan 45 menit dan 60 menit, tetapi berbeda nyata dengan lama pengukusan 75 menit (Lampiran 2). Untuk bahan yang dirajang 0,5 - 1 cm menghasilkan kadar bahan tidak larut dalam air yang lebih besar dibandingkan dengan bahan tidak dirajang dan bahan yang dirajang dengan ukuran 4 - 6 cm. Sedangkan untuk taraf ukuran rajangan 2 - 3 cm tidak ada perbedaan yang nyata (Lampiran 3). Dari kombinasi perlakuan lama pengukusan 30 menit dengan ukuran perajangan 0,5 - 1 cm memberikan pengaruh yang nyata terhadap kombinasi perlakuan 30 menit dan 4 - 6 cm, 45 menit dan 4 - 6 cm serta 60 menit dan 4 - 6 cm (Lampiran 4).

F. Kadar Bahan tidak Larut dalam Alkohol

Kadar bahan tidak larut dalam alkohol berkisar antara 11,75 persen sampai 13,47 persen (Tabel 2). Kadar tertinggi diperoleh pada kombinasi ukuran perajangan 0,5 - 1 cm dan lama pengukusan 75 menit. Sedangkan kadar terendah diperoleh pada kombinasi daun tidak dirajang dengan lama pengukusan 30 menit. Kadar bahan tidak larut dalam alkohol yang diperoleh ini masih lebih rendah dan memenuhi syarat kadar bahan tidak larut dalam alkohol yang dizinkan oleh Departemen Perdagangan. Kadar bahan tidak larut dalam alkohol akan meningkat dengan bertambahnya waktu pengukusan dan semakin kecil ukuran perajangan. Hal ini disebabkan oleh tekstur daun makin lunak sehingga ada bahan yang tidak larut dalam alkohol seperti dinding sel, kotoran terbawa bersama ekstrak.

Hasil sidik ragam menunjukkan bahwa ukuran perajangan dan lama pengukusan serta interaksi keduanya berpengaruh nyata terhadap kadar bahan tidak larut dalam alkohol. Hasil uji Duncan (Lampiran 2), menunjukkan lama pengukusan 30 menit menghasilkan kadar bahan tidak larut dalam alkohol yang lebih kuat dibandingkan dengan ketiga taraf lama pengukusan lainnya. Ukuran perajangan 0,5 - 1 cm berbeda nyata dengan bahan tidak dirajang (Lampiran 3). Dari kombinasi perlakuan lama pengukusan 30 menit dengan ukuran perajangan 0,5 - 1 cm tidak memberikan pengaruh yang nyata terhadap kombinasi lama pengukusan 30 menit dengan ukuran perajangan 4 - 6 cm.

IV. KESIMPULAN

1. Lama pengukusan dan ukuran perajangan berpengaruh nyata terhadap rendemen, kadar katechin, kadar bahan tidak larut dalam air dan kadar bahan tidak larut dalam alkohol. Sedangkan interaksi perlakuan perajangan dan lama pengukusan berpengaruh nyata terhadap rendemen, kadar katechin dan bahan tidak larut dalam alkohol.

2. Dari hasil analisis dan uji lanjut didapatkan bahwa, kombinasi lama pengukusan 30 menit dan ukuran rajangan 0,5 - 1 cm menghasilkan rendemen dan mutu gambir yang terbaik, dengan besar rendemen 10,34 persen dan kadar katechin 75,82 persen.
DAFTAR PUSTAKA

Lampiran 1. Standar mutu gambir untuk spesifikasi ekspor
Appendix 1. Quality standard of gambier for export

<table>
<thead>
<tr>
<th>Karakteristik</th>
<th>Mutu (Quality)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Organoleptik (Organoleptic)</td>
<td>utuh (whole)</td>
</tr>
<tr>
<td>Bentuk (Form)</td>
<td>khas (specific)</td>
</tr>
<tr>
<td>Bau (Odor)</td>
<td>60</td>
</tr>
<tr>
<td>Kadar katechin (Catechin content), min. % b/b (w/w)</td>
<td>17</td>
</tr>
<tr>
<td>Kadar air (Moisture content), max. % b/b (w/w)</td>
<td>5</td>
</tr>
<tr>
<td>Kadar abu (Ash content), max. % b/b (w/w)</td>
<td>7</td>
</tr>
<tr>
<td>Kadar bahan tak larut dalam air (Insoluble matter), max. % b/b (w/w)</td>
<td>15</td>
</tr>
<tr>
<td>Kadar bahan tak larut dalam alkohol (Insoluble matter in kohol), max. % b/b (w/w)</td>
<td></td>
</tr>
</tbody>
</table>

Sumber (Source): Departemen Perdagangan (1985)
Lampiran 2. Uji Duncan pengaruh waktu pengukusan terhadap rendemen, kadar katechin, kadar bahan tidak larut dalam air dan kadar bahan tidak larut dalam alkohol

Appendix 2. Duncan's test of the effect steaming duration on yield, catechin contain, insoluble matter in water and insoluble matter in alcohol

<table>
<thead>
<tr>
<th>Analisis (Analysis)</th>
<th>Waktu pengukusan (Steaming duration)</th>
<th>Rata-rata (Average)</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendemen (Yield)</td>
<td></td>
<td></td>
<td>8,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a1</td>
<td>8,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td>9,46</td>
<td>0,53**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a3</td>
<td>9,43</td>
<td>0,50**</td>
<td>0,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a4</td>
<td>8,72</td>
<td>0,20</td>
<td>0,73**</td>
<td>0,70**</td>
<td></td>
</tr>
<tr>
<td>Kadar katechin (Catechin content)</td>
<td></td>
<td></td>
<td>69,50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a1</td>
<td>69,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td>71,96</td>
<td>2,46**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a3</td>
<td>71,37</td>
<td>1,77**</td>
<td>0,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a4</td>
<td>68,35</td>
<td>1,13</td>
<td>3,60**</td>
<td>3,01**</td>
<td></td>
</tr>
<tr>
<td>Kadar bahan tidak larut dalam air (Insoluble matter)</td>
<td></td>
<td></td>
<td>4,26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a1</td>
<td>4,26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td>4,13</td>
<td>0,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a3</td>
<td>4,38</td>
<td>0,11</td>
<td>0,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a4</td>
<td>4,17</td>
<td>0,70*</td>
<td>0,84**</td>
<td>0,59*</td>
<td></td>
</tr>
<tr>
<td>Kadar bahan tidak larut dalam alkohol (Insoluble matter in alcohol)</td>
<td></td>
<td></td>
<td>11,70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a1</td>
<td>11,70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td>12,47</td>
<td>0,77**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a3</td>
<td>13,34</td>
<td>1,64**</td>
<td>0,87**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a4</td>
<td>13,38</td>
<td>1,68**</td>
<td>0,91**</td>
<td>0,04</td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 3. Uji Duncan pengaruh ukuran perajangan terhadap rendemen, kadar katechin, kadar bahan tidak larut dalam air dan kadar bahan tidak larut dalam alkohol

Appendix 3. Duncan's test to the effect chopping size on yield, catechin contain, insoluble matter in water and insoluble matter in alcohol

<table>
<thead>
<tr>
<th>Analisis (Analysis)</th>
<th>Waktu pengukusan (Steaming duration)</th>
<th>Rata-rata (Average)</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendemen (Yield)</td>
<td></td>
<td></td>
<td>9,54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b1</td>
<td>9,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b2</td>
<td>9,12</td>
<td>0,42**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b3</td>
<td>9,30</td>
<td>0,24</td>
<td>0,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b4</td>
<td>8,57</td>
<td>0,97**</td>
<td>0,54**</td>
<td>0,72*</td>
<td></td>
</tr>
<tr>
<td>Kadar katechin (Catechin content)</td>
<td></td>
<td></td>
<td>72,51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b1</td>
<td>72,51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b2</td>
<td>69,58</td>
<td>2,93**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b3</td>
<td>71,20</td>
<td>1,31**</td>
<td>1,62*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b4</td>
<td>67,87</td>
<td>4,64**</td>
<td>1,71*</td>
<td>3,32**</td>
<td></td>
</tr>
<tr>
<td>Kadar bahan tidak larut dalam air (Insoluble matter)</td>
<td></td>
<td></td>
<td>5,08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b1</td>
<td>5,08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b2</td>
<td>4,67</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b3</td>
<td>3,69</td>
<td>1,39**</td>
<td>0,97**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b4</td>
<td>4,30</td>
<td>0,78**</td>
<td>0,37</td>
<td>0,61*</td>
<td></td>
</tr>
<tr>
<td>Kadar bahan tidak larut dalam alkohol (Insoluble matter in alcohol)</td>
<td></td>
<td></td>
<td>12,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b1</td>
<td>12,81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b2</td>
<td>12,84</td>
<td>0,04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b3</td>
<td>12,72</td>
<td>0,08</td>
<td>0,12*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b4</td>
<td>12,52</td>
<td>0,28**</td>
<td>0,32**</td>
<td>0,20*</td>
<td></td>
</tr>
</tbody>
</table>

Appendix 4. Duncan’s test of the interaction of steaming duration and chopping size on yield, catechin content, insoluble matter in water and insoluble matter in alcohol

Analysis (Analysis)	Perlakuan (Treatment)	Rata-rata (Average)	a1b1	a2b2	a3b3	a4b4	a1b2	a2b3	a3b4	a1b3	a2b4	a3b5	a4b6	a1b4	a2b5	a3b6	a4b7	a1b5	a2b6	a3b7	a4b8	a1b6	a2b7	a3b8	a4b9		
Kadar catechin	(Catechin content)		75.82	-	-	-	69.04	68.05	65.05	63.61	74.47	71.95	67.80	67.65	73.42	70.85	68.98	66.25	63.77	67.80	64.86	62.24	5.24	4.82	4.01	4.02	3.92
Kadar bahan tidak larut dalam air			4.86	-	-	-	4.62	3.62	3.96	4.89	4.27	3.50	3.86	4.47	4.52	3.64	4.47	4.70	4.25	4.04	4.92	6.04	6.12	5.71	5.71	5.72	5.71
(Insoluble matter)			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Kadar bahan tidak larut dalam air			12.03	-	-	-	11.80	11.17	11.17	12.56	12.50	12.39	12.45	13.16	12.61	13.41	13.18	13.47	13.44	13.32	12.50	1.42	1.29	0.95	0.95	0.95	
(Insoluble matter in alcohol)			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Keterangan (Remarks):

* = Nyata (Significant)
** = Sangat nyata (Highly significant)

 strife = Waktu pengukuran (Steaming duration) 75 menit
b1 = Ukuran pengaruh (Chopping size) 5.0 - 1 cm
a1 = Waktu pengukuran (Steaming duration) 30 menit
b2 = Ukuran pengaruh (Chopping size) 2 - 3 cm
a2 = Waktu pengukuran (Steaming duration) 45 menit
b3 = Ukuran pengaruh (Chopping size) 4 - 6 cm
a3 = Waktu pengukuran (Steaming duration) 60 menit
b4 = Daun tidak dirajang (Unchopped)

224

PEMBUATAN ARANG DAN BRIKET ARANG DARI KAYU MANIS
(Cinnamomum burmanii Ness ex. BL) DAN KAYU SUKUN (Artocarpus altilis Parkinson)
(Charcoal and Charcoal briquette of cass iavera and breadfruit wood)

Oleh/By:
Sri Komarayati dan Cusmailina

Summary
The aim of this experiment is to find the properties of cassiavera and breadfruit charcoal and charcoal briquette. The kiln used was the typical size of 200 litre oil drum with special design incorporating 12 holes of 15 mm in diameter at different elevations. The kiln also had a short chimney of 30 cm high at the top with 10 cm in diameter. The result showed that charcoal yield were 24.74 % for cassiavera and 27.21 % for breadfruit. Volatile matter was 18.61 % , fixed carbon was 78.31 % and calorific value was 7035.03 cal/g for cassiavera charcoal and volatile matter was 14.27 %, fixed carbon was 73.10 % and calorific value was 6320.12 cal/g for breadfruit charcoal.

The moisture content of charcoal briquette ranges from 8.41 to 5.92 %, ash content from 4.65 to 5.03 %, volatile matter from 28.87 to 29.48 %, fixed carbon from 65.87 to 66.10 %, density from 0.11 to 0.64 g/cm³, compressing strength from 275 to 450 kg/cm² and the calorific value from 5684.59 to 6792.58 cal/g.

Based on the physical and chemical properties, cassia-vera and breadfruit charcoal briquette can be used as sources of energy.

I. PENDAHULUAN

Dalam upaya lebih meningkatkan pengenaal sifat dan kegunaan dari kedua jenis kayu tersebut, maka dilakukan penelitian batang kayu manis dan kayu sukun menjadi sumber energi dalam bentuk arang dan briket arang. Tujuan penelitian yaitu untuk mengetahui kemungkinan batang kayu manis dan kayu sukun sebagai sumber energi dalam bentuk arang maupun briket arang dengan mengetahui sifat fisik dan kimia.

II. BAHAN DAN METODE
Contoh kayu dalam penelitian ini berasal dari daerah Kecamatan Gunung Pangilun, Padang, Sumatera Barat.

Contoh uji yang digunakan berasal dari daerah dataran rendah dengan umur 15 tahun, di mana bagian yang diambil adalah batang dengan ukuran setengah dada. Sebelum dilakukan pembakaran (proses pengarangan), contoh uji dipotong-potong dengan ukuran panjang 20 - 25 cm dan diameter 2,5 - 15 cm. Pengarangan dilakukan dengan menggunakan kiln drum yang mempunyai volume 200 liter, suhu 475° C selama 10,5 jam.

III. HASIL DAN PEMBAHASAN

A. Arang

Data hasil penelitian pembuatan arang kayu manis dan kayu sukun dengan kiln drum dapat dilihat pada Tabel 1 dan Tabel 2. Rendemen arang diperoleh adalah 23,01% dan 24,74% berturut-turut untuk kayu sukun dan kayu manis. Tinggi rendahnya rendemen hasil pengaranan sangat dipengaruhi oleh kecepatan proses, berat jenis kayu, komposisi kimia di dalam ka dan umur tanaman.

Bila diperhatikan ternyata rendemen arang yang diperoleh dari pengaranan dengan kiln drum lebih rendah dibandingkan dengan rendemen arang hasil pengaranan dengan menggunakann retort. Ha ini disebabkan karena adanya perbedaan prinsip yaitu pada retort, pemanasan proses berasal dari panas bahan bakar arang itu sendiri juga diberikan pemanasan pada dingin retort dengan sumber panas yang berasal dari pembakaran biomasa atau tenaga listrik. Demikian cara demikian, maka proses karbonisasi berjalan ingat cepat dan merata sehingga diperoleh hasil rendemen yang tinggi. Rendemen arang yang diperoleh dengan retort berkisar antara 25 - 30%, sedangkan dengan kiln drum sekitar 20 - 25% (Sudradjat dan Soleh, 1994).

Berat jenis kayu sukun (0,24) lebih rendah dari berat jenis kayu manis (0,59). Variasi berat jenis dipejar siri oleh beberapa faktor antara lain posisi batang dan ketinggian batang di atas tanah.

Kadar air kayu tidak jauh berbeda yaitu 18,84% untuk kadar air kayu manis dan 18,91% kadar air kayu sukun. Perbedaan tinginya kadar air kayu selain dipengaruhi oleh faktor-faktor dalam kualitas sendiri, juga oleh letak ketinggian pada pohon (Rasmussen, 1961 dalam Supraman, Nurwati dan Sarwono, 1988).

Tabel 1. Sifat-sifat kayu manis dan kayu sukun serta rendemen arang

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Kayu manis (Cassierwa wood)</th>
<th>Kayu sukun (Breadfruit wood)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Berat jenis</td>
<td>0,59</td>
<td>0,24</td>
</tr>
<tr>
<td>(Specific gravity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Kadar air</td>
<td>18,84</td>
<td>18,91</td>
</tr>
<tr>
<td>(Moisture content)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Rendemen arang</td>
<td>24,74</td>
<td>23,01</td>
</tr>
<tr>
<td>(Yield of charcoal)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pada Tabel 2 tercantum hasil analisis sifat arang, di mana kadar air yang diperoleh 4,55% untuk arang kayu manis dan 6,50% untuk arang kayu sukun. Perbedaan kadar air disebabkan oleh daya scrap air, kelembaban udara serta lama dan cara penyimpanan.

Kadar abu 3,08% untuk arang kayu manis dan 2,65% untuk arang kayu sukun. Perbedaan kadar abu dipengaruhi oleh jenis kayu dan tempat bumbuh.

Kadar zat mudah menguap arang kayu manis 18,61% dan arang kayu sukun 14,27%. Besar kecilnya zat zat mudah menguap dipengaruhi oleh suhu maksimum pengolahan, yaitu makin tinggi suhu maksimum pengarangan makin rendah kadar zat mudah menguap dan makin tinggi kualitas arangnya (Hudaya dan Hartoyo, 1988).

Tabel 2. Sifat kimia-fisis arang kayu manis dan kayu sukun

<table>
<thead>
<tr>
<th>Sifat-sifat (Properties)</th>
<th>Arang kayu manis (Cassierwa charcoal)</th>
<th>Arang kayu sukun (Breadfruit charcoal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Kadar air (Moisture content), %</td>
<td>4,55</td>
<td>6,50</td>
</tr>
<tr>
<td>- Kadar abu (Ash content), %</td>
<td>3,08</td>
<td>2,65</td>
</tr>
<tr>
<td>- Zat mudah menguap (Volatile matter), %</td>
<td>18,61</td>
<td>14,27</td>
</tr>
<tr>
<td>- Kadar karbon terikat (Fixed carbon), %</td>
<td>78,31</td>
<td>73,10</td>
</tr>
<tr>
<td>- Nilai kalor (Calorific value), cal/g</td>
<td>7035,03</td>
<td>6320,12</td>
</tr>
</tbody>
</table>

Kadar karbon terikat arang kayu manis 78,31%, arang kayu sukun 73,10%. Kadar karbon terikat yang tinggi lebih disukai karena akan meningkatkan kualitas arang, baik ditinjau dari kadar karbon maupun nilai kalor. Kedua jenis arang ini termasuk baik, karena mempunyai kadar karbon terikat di atas 70%.

Nilai kalor 6320,12 cal/g dan 7035,03 cal/g termasuk baik untuk digunakan sebagai sumber energi. Variasi nilai kalor sangat dipengaruhi oleh kadar lignin dan zat ekstraktif. Kadar lignin yang tinggi pada kayu akan meningkatkan nilai kalor kayu tersebut. Sedangkan pengaruh kadar ekstraktif tergantung pada mudah tidaknya zat ekstraktif dalam kayu tersebut dapat terbakar.

Untuk mengetahui apakah arang kayu manis dan kayu sukun dapat dibuat arang aktif, maka pada Tabel 3 dicantumkan sifat arang hasil penelitian dibandingkan dengan syarat arang untuk bahan arang aktif.

Tabel 3. Sifat arang hasil penelitian dibandingkan dengan persyaratan arang untuk bahan arang aktif

<table>
<thead>
<tr>
<th>Sifat-sifat (Properties)</th>
<th>Arang kayu manis (Charcoal from Cassava)</th>
<th>Arang kayu sukun (Charcoal from Breadfruit)</th>
<th>Syarat untuk arang aktif (Required for activated charcoal material)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar air (Moisture content), %</td>
<td>4,55</td>
<td>6,50</td>
<td>3 - 10</td>
</tr>
<tr>
<td>Kadar abu (Ash content), %</td>
<td>3,08</td>
<td>2,65</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Zat mudah menguap (Volatile matter), %</td>
<td>18,61</td>
<td>14,27</td>
<td>15 - 20</td>
</tr>
<tr>
<td>Kadar karbon terikat (Fixed carbon), %</td>
<td>78,31</td>
<td>73,10</td>
<td>70 - 80</td>
</tr>
</tbody>
</table>

Keterangan (Remark) : * = Menurut Hudaya dan Hartoyo (1988)

Bila diperhatikan pada Tabel 3, ternyata arang kayu manis dan arang kayu sukun memenuhi syarat bila digunakan sebagai bahan arang aktif.

B. Briket Arang

- **Sifat Fisis**

Dari Tabel 4 dapat diketahui bahwa kerapatan briket arang kayu manis dan kayu sukun termasuk tinggi, karena lebih besar dari 0,60 yaitu berturut-turut 0,64 dan 0,61 gr/cm³. Apabila dibandingkan dengan briket arang komersial, briket arang hasil penelitian mempunyai kerapatan yang lebih besar. Hal ini disebabkan ukuran serbuk arang lebih besar dari briket arang komersial. Hasil penelitian ini sesuai dengan yang dilakukan oleh Hartoyo (1983) yaitu semakin tinggi kehalusan, maka kerapatannya semakin tinggi.

Keteguhan tekan berkisar antara 275 - 450 kg/cm². Besarnya nilai keteguhan tekan sangat dipengaruhi oleh beberapa faktor antara lain berat jenis kayu, jenis perekat dan tekanan pengempaan (Sudradjat, 1983). Dari hasil analisis diperoleh keteguhan tekan berat arang kayu manis lebih besar dari pada berat arang kayu sukun, karena memang berat jenisnya lebih besar.

Tingginya angka kerapatan dan keteguhan tekan briket arang dari kayu yang mempunyai berat jenis tinggi disebabkan sere' yang lebih rapat dan komponen selulosa pula a dinding sel lebih banyak.

- **Sifat Kimia**

Bagi air dan kadar zat madah mengandung dipengaruhi oleh kerapatan yaitu apabila kerapatan tinggi, maka kadar air dan kadar zat madah mengandung rendah. Pernyataan tersebut terbukti pada briket arang kayu manis yaitu kerapatan 0,64 g/cm³ mempunyai kadar air 5,41 % dan kadar zat madah menguap 28,87 %. Hasil ini lebih kecil dibandingkan dengan kadar air dan kadar zat madah menguap briket arang sukun yaitu berturut-turut 5,92 % dan 29,48 %.

Kadar karbon terikut berhubungan dengan nilai karar, di mana semakin tinggi kadar karbon terikut malam nilai kalor akan tinggi, karena dengan adanya reali oksidasi maka akan menghasilkan kalori (Sudradjat, 1983).

Tabel 4. Sifat fisik dan kimia briket arang kayu manis, kayu sukun dan briket arang impor dari Jepang

<table>
<thead>
<tr>
<th>Bahan baku (Raw material)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Kayu manis (Charcoal)</td>
<td>5,41</td>
<td>5,03</td>
<td>28,87</td>
<td>66,10</td>
<td>0,64</td>
<td>450</td>
<td>6792,58</td>
</tr>
<tr>
<td>- Kayu sukun (Breadfruit)</td>
<td>5,92</td>
<td>4,65</td>
<td>29,48</td>
<td>65,87</td>
<td>0,61</td>
<td>275</td>
<td>5684,59</td>
</tr>
<tr>
<td>- Briket arang impor (Imported charcoal briquette)</td>
<td>6 - 8</td>
<td>3 - 6</td>
<td>15 - 30</td>
<td>60 - 80</td>
<td>-</td>
<td>6000</td>
<td>7000</td>
</tr>
</tbody>
</table>

Keterangan (Remark) :
1 = Kadar air (Moisture content), %
2 = Kadar abu (Ash content), %
3 = Kadar zat mudah menguap (Volatile matter), %
4 = Kadar karbon terikut (Fixed carbon), %
5 = Kerapatan (Density), gr/cm³
6 = Keteguhan tekan (Compressing strength), kg/cm²
7 = Nilai kalor (Calorific value), cal/g

* = Menurut Sudradjat (1982)

Berat jenis kayu manis 0,59, sedangkan kayu sukun hanya 0,24. Nilai kalor yang diperoleh adalah 6792,58 cal/gr (briket arang kayu manis) dan 5684,59 cal/gr (briket arang kayu sukun). Perbedaan nilai kalor ini dipengaruhi oleh perbedaan karbon terikat yaitu 66,10% (briket arang kayu manis) dan 65,87% (briket arang kayu sukun). Bila dibandingkan dengan nilai kalor arangnya, maka nilai kalor briket arang lebih rendah akibat pengaruh campuran perekat.

Sifat-sifat briket arang kayu manis dan kayu sukun hampir mendekati sifat briket arang impor dari Jerman, terutama pada kadar air, kadar abu, zat-mudah menguap, karbon terikat dan nilai ka'-in (Tabel 4).

IV. KESIMPULAN

Dari hasil penelitian pembuatan arang dan briket arang kayu manis dan kayu sukun dapat disimpulkan bahwa:

1. Rendemen arang kayu manis adalah 24,74% dan arang kayu sukun 23,01%. Kadar zat muah menguap adalah 18,61% untuk arang kayu manis dan 14,27% untuk arang kayu sukun. Kadar karbon terikat adalah 78,31% untuk arang kayu manis dan 73,10% untuk arang kayu sukun. Ini terakhir ini termasuk baik, karena lebih besar dari 70%. Nilai kalor arang kayu manis adalah 7025,03 cal/g dan arang kayu sukun 6320,12 cal/g, kedua termasuk tinggi. Dengan demikian arang kayu manis dan arang kayu sukun cukup baik digunakan sebagai sumber energi. Arang kayu manis dan arang kayu sukun memenuhi syarat untuk digunakan sebagai bahan arang aktif.

2. Sifat-sifat briket arang kayu manis dan kayu sukun setara dengan briket arang impor. Oleh karena itu kedua jenis pohon serbaguna ini dapat digunakan sebagai sumber energi dalam bentuk arang maupun briket arang.

DAFTAR PUSTAKA

M.I. Iskandar

Suwandi Kliwon

Paribotro Sutigno

Bambang Wiyono

Kirsifianti Linda Ginoga
Zulnely
Lahir di Jakarta tanggal 9 November 1960
Lulus FMIPA Jurusan Kimia Universitas Andalas Padang tahun 1985

Abdul Hakim
Lahir di Jakarta tanggal 7 Januari 1959

Sri Komarayati
Lahir di Bandung tanggal 17 September 1955.

Gusmailina
Lahir di Medan tanggal 1 Agustus 1957
Lulus Sarjana Biologi Universitas Andalas, Padang tahun 1983.
PETUNJUK BAGI PENULIS

BAHASA : Naskah ditulis dalam bahasa Indonesia dengan ringkasan dalam bahasa Inggris atau dalam bahasa Inggris dengan ringkasan bahasa Indonesia.

FORMAT : Naskah diketik di atas kertas kuarto putih pada satu permukaan dengan 2 spas. Pada semua tepi kertas disisakan ruang kosong minimal 3,5 cm.

JUDUL : Judul dibuat tidak lebih dari 2 baris dan harus mencerminkan isi tulisan. Nama penulis dicantumkan di bawah judul.

RINGKASAN : Ringkasan dibuat tidak lebih dari 200 kata berupa intisari permasalahan secara menyeluruh, dan bersifat informatif mengenai hasil yang dicapai.

TABEL : Judul tabel dan keterangan yang diperlukan ditulis dalam bahasa Indonesia dan Inggris dengan jelas dan singkat. Tabel harus diberi nomor.

GAMBAR GARIS : Grafik dan ilustrasi lain yang berupa gambar garis harus kontras dan dibuat dengan tinta hitam. Setiap gambar garis harus diberi nomor, judul dan keterangan yang jelas dalam bahasa Indonesia dan Inggris.

FOTO : Foto harus mempunyai ketajaman yang baik, diberi judul dan keterangan seperti pada gambar.

DAFTAR PUSTAKA : Daftar pustaka yang dirujuk harus disusun menurut abjad nama pengarang dengan mencantumkan tahun penerbitan, seperti teladan berikut:

NOTES FOR AUTHORS

LANGUAGE : Manuscripts must be written in Indonesian with English summary or vice versa.

FORMAT : Manuscripts should be typed double spaced on one face of A4 white paper. A 3.5 cm margin should be left on all sides.

TITLES : Title must not exceed two lines, and should reflect the content of the manuscript. The author's name follows immediately under the title.

SUMMARY : Summary must not exceed 200 words and should comprise informative essence of the entire content of the article.

TABLE : Title of tables and all necessary remarks must be written in Indonesian and English. Tables should be numbered.

LINE DRAWING : Graphs and other line drawing illustrations must be drawn in high contrast black ink. Each drawing must be numbered, titled and supplied with necessary remarks in Indonesia and English.

PHOTOGRAPH : Photographs submitted should have high contrast, and must be supplied with necessary information as in line drawing.

REFERENCE : References must be listed in alphabetical order of author's name with their year of publications as in the following example: