HAMAN DAN PENYAKIT JENIS MURBEI EKSO DAN TINGKAT KEHILANGAN DAUNNYA PADA AKHIR MUSIM KEMARAU
(Pest and Disease of Exotic Mulberry and Level of Its Leaves Lost in the End of Dry Season)

Oleh/By:
Retno Prayudyaningsih, Hermin Tikupadang, dan/and Budi Santoso

ABSTRACT

Attack of pest and disease of mulberry causes the decrease of leaf production quality and quantity. If this problem is let to continue, there will be possibility of decreasing available mulberry leaf and farmer will face problem in managing their silkworm. This research was conducted in district of Wajo, Sidrap, and Enrekang in November 2003. Exotic mulberry (Morus indica S-54 and Morus multicaulis), and Morus nigra were observed to know their kind of pest and disease at the end of dry season and leaves lost level effected by pest and disease attack. Randomized Complete Design was applied with 3 x 3 factorial experiments. The first factor was species of mulberry and the second factor was location. The Result showed there were 8 kind of pests and 4 kind of diseases attacked exotic mulberry in fluend of dry season. Kind of pest which caused the most common damage on mulberry leaves were mealy bug and grasshopper, while kind of disease which causes the most common damage on mulberry leaves were leaves spot disease and rusted disease. Location which have the highest of leaves losting level was district of Wajo (20.05 %), while mulberry species which have highest of leaves losting level was M. indica S-54 (15.32 %).

Key words: Mulberry pest and disease, exotic mulberry, leaves losting level

ABSTRAK

Kata kunci: Hama dan penyakit murbei, murbei eksot, tingkat kehilangan daun

I. PENDAHULUAN

A. Latar Belakang

Tersediannya tanaman murbei yang baik merupakan salah satu faktor penentu kontinuitas produksi benang sutera, namun ketersediaan tanaman itu sangat dipengaruhi oleh sistem budidaya tanaman seperti pemilihan varietas yang ditanam, pemangkasan, pemupukan, dan adanya serangan hama dan penyakit serta kekerapan pada musim kemarau. Serangan hama dan penyakit pada tanaman murbei akan mengakibatkan produksi daun menurun, baik kualitas maupun kuantitasnya. Apabila masalah ini dibiarkan berlanjut, maka kemungkinan tersediannya
daun murbei akan berkurang dan pemeli-
harana ulat suter terutama pada tingkat
petani akan terhambat.

Ada 10 jenis hama dan penyakit ta-
naman murbei di Sulawesi Selatan yang
menyebabkan kerusakan (Katsumata,
1975). Pada umumnya hama dan penyai-
kit tersebut menyerang seluruh bagian
tanaman, baik daun, batang maupun akar.
Dampak negatif dari serangan ini akan
mempengaruhi produksi daun dan kuali-
tas daun menurun terutama kandungan air
dan protein sehingga tidak baik diguna-
kan sebagai pakan ulat suter.

Setiap periode, jenis hama dan pe-
nyakit yang menyerang tanaman murbei
sangat berbeda. Pada akhir musim peng-
hujan tanaman murbei banyak terserang
hama pucuk, sedang pada musim kema-
rau jenis jamur violet yang banyak me-
nyerang akar tanaman murbei. Sampai
saat ini masih sangat kurang data dan
informasi tentang tingkat kerusakan dan
kehilangan daun jenis-jenis murbei eksot
di Sulawesi Selatan.

B. Tujuan

Tujuan penelitian adalah:
1. Untuk mendapatkan data jenis hama
dan penyakit pada tanaman murbei
Morus indica S-54 dan *Morus multi-
caulis* sebagai jenis eksot dan *Morus
nigra* sebagai jenis yang telah lama
dibudidayakan di Sulawesi Selatan.
2. Mendapatkan informasi tingkat kehi-
langan daun tanaman murbei *M.
indica* S-54 dan *M. multicaulis* dan
M. nigra akibat serangan hama dan
penyakit.

II. METODOLOGI PENELITIAN

A. Lokasi dan Waktu Penelitian

Penelitian dilakukan di Lawawoi (Ka-
bupaten Sidrap), Sudu (Kabupaten Enrek-
gang), dan Sabbangparu (Kabupaten Wa-

B. Bahan dan Peralatan

Bahan penelitian yang digunakan
adalah tanaman murbei *M. nigra, M. indi-
ca* S-54, dan *M. multicaulis* yang ber-
umur kurang lebih empat bulan dari
pangkasan. Bahan penelitian yang lain
adalah alkohol, kloroform, dan kantong
plastik; sedangkan peralatan yang digun-
akan dalam penelitian ini adalah guntung
tekm, timbang, meteran, pinset, dan
scalpel.

C. Rancangan Penelitian

Penelitian ini dilakukan dengan cara
membuat plot di lapangan yang ditentu-
kan secara purposive sampling. Bentuk
plot bujur sangkar dengan ukuran 10 m x
10 m sebanyak 3 buah untuk setiap jenis
tanaman murbei pada masing-masing lo-
kasi, dengan jumlah tanaman yang di-
amati sebanyak 50 individu tanaman per
plot. Selanjutnya dilakukan pengamatan
terhadap intensitas serangan yaitu diamati
dengan cara membandingkan jumlah ta-
naman yang terserang dengan jumlah ta-
naman yang diamati dan persentase jum-
lah daun yang terserang hama dan pe-
nyakit per tanaman yaitu diamati dengan
cara membandingkan jumlah daun yang
terserang dengan jumlah daun total per
tanaman. Identifikasi hama dan penyakit
yaitu diamati dengan jalan melihat bentuk
serangan dan identifikasi serangga dan
penyakit di laboratorium. Tingkat kehi-
langan daun dihitung dengan cara mem-
bandingkan berat daun yang terserang ha-
ma dan penyakit per tanaman dengan
jumlah daun per tanaman dan rerata be-
rat daun normal per helai.

E. Analisis data

1. Analisis Varian

Data hasil pengamatan tingkat kehi-
langan daun rata-rata, selanjutnya dianali-
sis menggunakan analisis varian dari ran-
cangan acak lengkap dengan percobaan
faktorial. Faktor pertama adalah jenis
murbei dan faktor kedua adalah lokasi.
Model statistiknya menurut Gasperzs (1991) adalah sebagai berikut:

\[Y_{ijk} = u + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk} \quad \ldots \ldots \ldots (1) \]

\[i = 1, \ldots, a \]
\[j = 1, \ldots, b \]
\[k = 1, \ldots, r \]

\[\text{dimana :} \]
\[Y_{ij} = \text{Nilai pengamatan pada satuan percobaan ke-k yang memperoleh kombinasi perlakuan ij (taraf ke-1 dari faktor A dan taraf ke-j dari faktor B)} \]
\[u = \text{Nilai tengah populasi (rata-rata yang sesungguhnya)} \]
\[\alpha_i = \text{Pengaruh aditif taraf ke-i dari faktor A} \]
\[\beta_j = \text{Pengaruh aditif taraf ke-j dari faktor B} \]
\[(\alpha \beta)_{ij} = \text{Pengaruh interaksi taraf ke-i faktor A dan taraf ke-j faktor B} \]
\[\epsilon_{ijk} = \text{Pengaruh galat dari satuan percobaan ke-k yang memperoleh perlakuan ij} \]

2. Uji Lanjutan BNJD (Beda Nyata Jarak Duncan)

Untuk mengetahui kombinasi yang berbeda dilakukan uji lanjutan BNJD dengan formulasi menurut Gomez (1995) sebagai berikut:

\[\text{BND} = R \alpha x \sqrt{\frac{S^2}{r}} \quad \ldots \ldots \ldots (2) \]

\[\text{dimana :} \]
\[R \alpha = \text{nilai baku R standar pada taraf uji} \]
\[S^2 = \text{nilai kuadrat tengah galat (KTG)} \]
\[R = \text{jumlah ulangan} \]

III. HASIL DAN PEMBAHASAN

A. Hama dan Penyakit

Hasil pengamatan di lapangan dan laboratorium mengenai jenis hama dan penyakit yang menyebabkan kerusakan pada setiap jenis murbei yang diamati di masing-masing lokasi pengamatan disajikan pada Tabel 1.

Tabel 1 menunjukkan kutu daun, belalang, penyakit bercak daun, dan penyakit karat merupakan jenis hama dan penyakit yang menyerang semua jenis tanaman murbei di semua lokasi pengamatan. Pada tanaman murbei M. nigra, penyakit karat dan kutu daun merupakan jenis hama dan penyakit yang memimbulkan kerusakan paling besar karena sebagian besar daun M. nigra terserang penyakit karat dan kutu daun pada daun yang masih muda. Pada tanaman murbei jenis M. indica dan M. multicaulis, kutu daun, belalang, dan penyakit bercak daun merupakan jenis hama dan penyakit yang paling besar menimbulkan kerusakan. Sebagian besar daun M. indica dan M. multicaulis terserang jenis hama dan penyakit tersebut.

Kutu daun menghisap cairan daun terutama daun muda sehingga kandungan nutrisinya (terutama protein dan air) berkurang. Hal tersebut dapat menyebabkan berkurangnya ketersediaan pakan untuk ulat kecil karena ulat kecil memerlukan pakan (daun murbei) yang mempunyai kandungan air tinggi. Penyakit bercak daun dan karat menyerang daun muda maupun daun tua. Daun yang terserang akan kehilangan nutrisi dan air, serta penampakan daunnya menjadi tidak sehat.
<table>
<thead>
<tr>
<th>Jenis murbei</th>
<th>Jenis hama dan penyakit murbei di tiap lokasi pengamatan di Sulawesi Selatan (Kind of mulberry pest and diseases in every observation location at South Sulawesi)</th>
<th>Lokasi (Location)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morus nigra</td>
<td>Kutu daun, kutu batang, belalang, dan penyakit karat (Leaf flea (Maconellicoccus hirsutus Green), stem flea (Epepectes plarator Newman), grasshopper (Valanga sp.), and rust leaf (Accidium mori Barclay))</td>
<td>Kab. Wajo</td>
</tr>
<tr>
<td></td>
<td>Hama pucuk, kutu daun, belalang, penyakit berca daun (Shoot pest (Glypodes puverulentalis Hamson), leaf flea (Maconellicoccus hirsutus Green), grasshopper (Valanga sp. and Locusta sp.), and leaf spot (Septogleum mori Briosi et Cavapa))</td>
<td>Kab. Sidrap</td>
</tr>
<tr>
<td></td>
<td>Hama pucuk, belalang, penyakit bintik daun, berca daun dan karat (Shoot pest (Glypodes puverulentalis Hamson), leaf spot (Septogleum mori Briosi et Cavapa) and rust leaf (Accidium mori Barclay))</td>
<td>Kab. Enrekang</td>
</tr>
<tr>
<td>Morus indica S-54</td>
<td>Kutu daun, kutu batang, belalang, penyakit berca daun dan karat (Leaf flea (Maconellicoccus hirsutus Green), stem flea (Epepectes plarator Newman), grasshopper (Valanga sp.) and rust leaf (Accidium mori Barclay))</td>
<td>Kab. Wajo</td>
</tr>
<tr>
<td></td>
<td>Hama pucuk, kutu daun, penggere batang, kutu batang, penyakit tepung, bintik daun, berca daun dan karat (Shoot pest (Glypodes puverulentalis Hamson), leaf flea (Maconellicoccus hirsutus Green), stem flea (Pseudalacapsis pentagona Torgioni), leaf spot (Septogleum mori Briosi et Cavapa) and leaf rust (Accidium mori Barclay))</td>
<td>Kab. Sidrap</td>
</tr>
<tr>
<td></td>
<td>Kutu daun, penggere batang, dan belalang (Leaf flea (Maconellicoccus hirsutus Green), sucker stem (Epepectes plarator Newman), grasshopper (Valanga sp.)</td>
<td>Kab. Enrekang</td>
</tr>
<tr>
<td>Morus multicaulis</td>
<td>Kutu daun, kutu batang, belalang, penyakit berca daun dan karat (Leaf flea (Maconellicoccus hirsutus Green), stem flea (Pseudalacapsis pentagona Torgioni), leaf spot (Septogleum mori Briosi et Cavapa) and leaf rust (Accidium mori Barclay))</td>
<td>Kab. Wajo</td>
</tr>
<tr>
<td></td>
<td>Hama pucuk, kutu daun, belalang, penyakit tepung, bintik daun, berca daun dan karat (Shoot pest (Glypodes puverulentalis Hamson), stem flea (Pseudalacapsis pentagona Torgioni), grasshopper (Valanga sp. and Ducettia sp.), powdery mildew (Phyllactinia corylea), leaf spot (Septogleum mori Briosi et Cavapa) and leaf rust (Accidium mori Barclay))</td>
<td>Kab. Sidrap</td>
</tr>
<tr>
<td></td>
<td>Kutu daun, penggere batang, dan belalang (Leaf flea (Maconellicoccus hirsutus Green), sucker (Epepectes plarator Newman) and grasshopper (Valanga sp.)</td>
<td>Kab. Enrekang</td>
</tr>
</tbody>
</table>

karena terdapat berca-berca, berubah warna, dan mengeraskan hingga tidak baik untuk pakan ulat sutera. Belalang memakan daun yang tua maupun muda sehingga menyebabkan produksi daun berkurang.

B. Tingkat Kehilangan Daun Akibat Serangan Hama dan Penyakit

Hasil analisis varian (Lampiran 1) menunjukkan bahwa lokasi tempat tumbuh murbei berpengaruh sangat nyata terhadap tingkat kehilangan daun, sedang-
kan jenis murbei dan interaksi antara jenis dengan lokasi tempat tumbuh murbei tidak berpengaruh nyata terhadap tingkat kehilangan daun. Untuk mengetahui perbedaannya maka dilakukan uji lanjutan ya-
itu Uji Beda Nyata Jarak Duncan (BNJD) yang disajikan pada Tabel 2.

Tabel (Table) 2. Uji Beda Nyata Jarak Duncan tingkat kehilangan daun murbei akibat serangan hama dan penyakit di masing-masing lokasi di Sulawesi Selatan (DMRT of leaves losing level effected by pest and disease attacks in every location at South Sulawesi)

<table>
<thead>
<tr>
<th>Lokasi (Location)</th>
<th>Kehilangan daun (Leaves losing)</th>
<th>Persentase (Percentage) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gram/tanaman (Gram/plant)</td>
<td></td>
</tr>
<tr>
<td>Enrekang</td>
<td>16,21a</td>
<td>4,74 a</td>
</tr>
<tr>
<td>Sidrap</td>
<td>24,63a</td>
<td>8,05a</td>
</tr>
<tr>
<td>Wajo</td>
<td>41,36b</td>
<td>20,05b</td>
</tr>
</tbody>
</table>

Keterangan (Remarks):
Angka yang diikuti huruf yang sama menunjukkan tidak berbeda nyata pada taraf 1% (Values followed by the same letter are not significant at 1% level)

Menurut Katsumata (1975) dalam Samsijah dan Kaomini (1986), kualitas daun murbei dipengaruhi oleh lokasi tempat tumbuh. Menurunnya kualitas daun murbei salah satunya adalah akibat adanya serangan hama dan penyakit. Dari hasil penelitian, lokasi yang tanaman murbeinnya mempunyai tingkat ke-

hilangan daun terbesar akibat serangan hama dan penyakit adalah Kabupaten Wajo (20,05 % atau 41,36 gram/tanaman). Hal ini tentu saja berhubungan dengan intensitas serangan hama dan pe-
nyakit, di mana pada penelitian ini Kabu-
paten Wajo merupakan lokasi yang inten-
sitas serangan hama dan penyakitnya ter-
besar yaitu rata-rata mencapai 100 % dan
94,34 % jumlah daun per tanamannya terserang hama dan penyakit. Pada Tabel 3 disajikan intensitas serangan hama dan penyakit tiap jenis murbei di masing-
masing lokasi.

Pada Tabel 4 menunjukkan jenis murbei yang mempunyai tingkat kehilangan daun terbesar adalah M. indica S-54 (15,32 % atau 37,79 gram/tanaman). Se-
ragan hama dan penyakit yang menye-
babakan tingkat kehilangan daun cukup besar tersebut berhubungan dengan kan-
dungan protein dan air daun murbei yang cukup tinggi. Menurut Philip (1997) kan-
dungan protein dan air dalam daun murbei sangat menentukan tingkat serangan hama dan penyakit. Menurut Santoso (2000) dan Santoso et al. (1999), kan-
dungan protein M. indica S-54 adalah
13,5 %, M. nigra adalah 6,28 %, dan M.
multicaulis adalah 4,73 %. Dengan demik-
ian kandungan protein M. indica S-54 lebih tinggi dibanding M. nigra dan

Tabel (Table) 3. Intensitas serangan hama dan penyakit murbei di berbagai lokasi di Sulawesi Selatan (Attack intensity of mulberry pest and diseases)

<table>
<thead>
<tr>
<th>Jenis murbei (Species of mulberry)</th>
<th>Lokasi (Location)</th>
<th>Intensitas serangan hama dan penyakit murbei (%) (Attack intensity of mulberry pest and diseases)</th>
<th>Persentase jumlah daun yang terserang hama dan penyakit per tanaman (Percentage of total of leaves which attacked by pest and diseases per tree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morus nigra</td>
<td>Kab. Wajo</td>
<td>100</td>
<td>93,94</td>
</tr>
<tr>
<td></td>
<td>Kab. Sidrap</td>
<td>53,5</td>
<td>25,36</td>
</tr>
<tr>
<td></td>
<td>Kab. Enrekang</td>
<td>86,9</td>
<td>15,34</td>
</tr>
<tr>
<td>Morus indica S-54</td>
<td>Kab. Wajo</td>
<td>100</td>
<td>97,46</td>
</tr>
<tr>
<td></td>
<td>Kab. Sidrap</td>
<td>80,1</td>
<td>23,83</td>
</tr>
<tr>
<td></td>
<td>Kab. Enrekang</td>
<td>88</td>
<td>15,56</td>
</tr>
<tr>
<td>Morus multicaulis</td>
<td>Kab. Wajo</td>
<td>100</td>
<td>91,63</td>
</tr>
<tr>
<td></td>
<td>Kab. Sidrap</td>
<td>77,2</td>
<td>33,9</td>
</tr>
<tr>
<td></td>
<td>Kab. Enrekang</td>
<td>82,2</td>
<td>23,17</td>
</tr>
</tbody>
</table>

433
M. multicaulis sehingga daun M. indica S-54 lebih disukai oleh serangga (hama) dan penyakit yang mengakibatkan M. indica S-54 mempunyai tingkat kehilangan daun paling tinggi dibanding murbei lain.

IV. KESIMPULAN

2. Delapan jenis hama yang menyerang tanaman murbei jenis M. nigra, M. indica S-54, dan M. multicaulis adalah hama pucuk (Glypodes pauperulentalis Hamson), kutu daun (Maconellieoccus hirsutus Green), belalang (Valanga sp., Locusta sp., dan Ducetia sp.), kutu batang (Pseudalacapris pentagona Torgioni), penggecek batang (Epeepctes plarator Newman), dan bekicot (Achatina fulica), sementara penyakitnya ada empat jenis yaitu penyakit tepung (Phyllactinia corylea), penyakit karat (Aecidium mori Barclay), berca daun (Septogleum mori Brioso et Cavapa), dan bintik daun (Sirosporum mori Sydow).

3. Tingkat kehilangan daun akibat serangan hama dan penyakit dipengaruhi oleh lokasi tempat tumbuh murbei. Lokasi tempat tumbuh yang tanaman murbeiny mempunyai tingkat kehilangan daun terbesar adalah Kabupaten Wajo (20,05 %). Jenis murbei yang mempunyai tingkat kehilangan daun terbesar adalah M. indica S-54 (15,32 %).

DAFTAR PUSTAKA

Lampiran (*Appendix*) 1. Analisis varian tingkat kehilangan daun murbei akibat serangan hama dan penyakit (*Varian analyses of leaves losing level effect of pest and disease attack*)

<table>
<thead>
<tr>
<th>Sumber variasi (Source variation)</th>
<th>Db (Df)</th>
<th>JK (SS)</th>
<th>KT (MS)</th>
<th>F. hitung (F. Calc)</th>
<th>F. Tabel (F. Table)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>8</td>
<td>1351,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Jenis murbei</td>
<td>2</td>
<td>179,32</td>
<td>89,66</td>
<td>2,02 ns</td>
<td>3,55</td>
</tr>
<tr>
<td>- Lokasi</td>
<td>2</td>
<td>885,31</td>
<td>442,65</td>
<td>9,98 **</td>
<td>3,55</td>
</tr>
<tr>
<td>- Interaksi</td>
<td>4</td>
<td>286,50</td>
<td>71,63</td>
<td>1,62 ns</td>
<td>3,21</td>
</tr>
<tr>
<td>Galat</td>
<td>18</td>
<td>789,53</td>
<td>44,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan (*Remark*): ** = Berbeda nyata pada taraf uji 1% (*Significant on level test 1%*)
ns = Tidak berbeda nyata (*Not significant*)