Manfaat besar di balik penampilan kecil

Asep Hidayat, Maman Turjaman

Sari


Kekayaan sumber daya alam Indonesia yang besar terbentang mulai dari tegakan hutan hujan tropis yang luas sampai dengan beragam mikroba yang kasat mata. Mereka memerankan fungsi yang saling bertautan untuk menyimbangkan kondisi lingkungan yang ideal. Namun fungsi yang menguntungkan dari mikroba akan hilang saat kondisi lingkungan hutan mendapatkan tekanan, seperti oleh aktivitas illegal logging, kebakaran, konversi dan eksploitasi yang berlebihan. Sejalan dengan perkembangan teknologi, peran dan fungsi mikroba semakin meningkat dengan cepat baik dari segi nilai ekonominya ataupun perannya terhadap lingkungan. Tulisan ini menjelaskan tentang beberapa biospospek pemanfaatan mikroba hutan untuk kesehatan (bio-health), lingkungan (bioremediasi, bioplastik), energi (bio-energy), dan kehutanan (pemicu pertumbuhan). Dengan mengetahui manfaaat tersebut diharapakan program perlindungan hutan dan reforestasi dapat dilakukan dengan sungguh-sungguh dengan mempertimbangkan kelestarian sumber daya mikroba yang ada di dalamnya. Diantara upaya pelestarian mikroba hutan adalah dilakukannya kegiatan isolasi, identifikasi dan bio-prospecting untuk berbagai kemanfaatannya, dan hal tersebut harus dilakukan secepat mungkin berlomba dengan tingginya laju kepunahan hutan.


Kata Kunci


Kehati; mikroba; bio-prospek; hutan tropis

Teks Lengkap:

PDF

Referensi


Brandl, H., Gross, R.A., Lenz, R.W. & Fuller, R.C. (1998). Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol, 54, 1977– 1982.

Bryant, M. (1979). Microbial methane production: theoretical aspects. Journal of Animal Science, 48, 193–201.

Clarck, D.A. (2007). Detecting tropical forests responses to global climatic changes and atmospheric change: current challenges and a way forward, Biotropica, 39, 4-19.

Conrad, R. (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology, 28, 193–202.

[ESDM] Menteri ESDM (2013). Keputusan Menteri ESDM Republik Indonesia Nomor 4051 K/07/MEM/2013 tentang Penetapan Catur Dharma Energi.

Direktorat Jenderal Energi Baru Terbarukan dan Konservasi Energi. (2014). Kebijakan Kementerian ESDM dalam Mengembangkan Enenergi Baru Terbarukan (EBT). Suara Bumi, Informatif dan Inspiratif. Pusat Pengelolaan Ekoregion Sumatera, Kementerian Lingkungan Hidup. X/Edisi 3, Juli-September, 2014.

Farrar, J.L. (1995). Trees in Canada. Canadian Forest Service and Fitzhenry & Whiteside Ltd. Markham ON. P. 502.

Fitria, R. (2013). Pemanfaatan sampah organik menjadi sumber energi. https://retnifitria.wordpress.com/2013/04/03/pemanfaatan-sampah-organik-menjadi-sumber-energi-3/. Downloaded on 17 Pebruari 2015

Frense, D. (2007). Taxanes: perspectives for biotechnological production. Appl Microbiol Biot, 73, 1233–1240.

Garyali, S., Kumar, A. & Reddy, M.S. (2013). Taxol Production by an Endophytic Fungus, Fusarium redolens, Isolated from Himalayan Yew. J. Microbiol. Biotechnol, 23, 1372–1380.

Grothe, E., Moo-Young, M. & Chisti, Y. (1999). Fermentation optimization for the production of poly(beta-hydroxybutyric acid) microbial thermoplastic. Enzyme Microb Technol, 25, 132–41.

Hidayat, A. & Tachibana, S. (2014). Decolorization of azo dyes and mineralization of phenanthrene by Trametes sp. RT10 Isolated from Indonesian mangrove forest. Indonesian Journal of Forestry Research, 1, 67-75.

Hidayat, A., Tachibana, S. & Itoh, K. (2012). Determination of chrysene degradation under saline conditions by Fusarium sp. F092, a fungus screened from nature. Fungal Biology, 116, 706-714.

IUC. 2014. The IUCN Red List of Threatened Species.

Jalgaonwala, R.E., Mohite, B.V. & Mahajan, R.T. (2011). A review: Natural products from plant associated endophytic fungi. J. Microbiol. Biotech. Res, 1, 21-32.

Kim, B.S., Lee, S.Y. & Chang, H.N. (1992). Production of poly-beta-hydroxy- butyrate by fed-batch culture of recombinant Escherichia coli. Biotechnol Lett, 14, 811–816.

Kiyohara, H., Torigoe, S., Kaida, N., Asaki, T., Iida, T., Hayashi, H. & Takizawa, N. (1994). Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. Journal of Bacteriology, 176, 2439–2443.

Laurance, W.F. (1999). Reflection on the tropical deforestation crisis. Biological Conservation, 91, 109-117.

Lin, F.C., Liu, X.H., Wang, H.K. & Zhang, C.L. (2003). Recent research and prospect on Taxol and its producing fungi. Acta Microbiol Sin, 43, 534–538.

Malik, S., Cusidó R.M., Mirjalili, M.H., Mayona, E., Palzon, J. & Bonfill, M. (2011). Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochemistry, 46, 23–34

Masters, J.J., Link, J.T., Snyder, L.B., Young, W.B. & Danishefsky, S.J. (1995). A total synthesis of taxol. Angew. Chem. Int. Ed. Engl., 34, 1723–1726

Nahadi. (2010). Program pengelolaan sampah melalui pemanfaatan teknologi composting berbasis masyarakat. http://jurnal.upi.edu/file/Nahadi2.pdfhttp://jurnal.upi.edu/file/Nahadi2.pdf. Downloaded on 17 Pebruari 2015.

Onrubia, M., Cusidó, R.M., Ramirez, K., Hernández-Vázquez, L., Moyano, E., Bonfill, M. & Palazon J. (2013). Bioprocessing of Plant In Vitro Systems for the Mass Production of Pharmaceutically Important Metabolites: Paclitaxel and its Derivatives. Current Medicinal Chemistry, 20, 880-891.

Pinyakong, O., Habe, H., Supaka, N., Pinpanichkarn, P., Juntongjin, K., Yoshida, T., Furihata, K., Nojiri, H., Yamane, H. & Omori, T. (2000). Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. Strain P2. FEMS Microbiology Letters, 191, 115–121.

Singh, H. (2006). Mycoremediation:Fungal Bioremediation. John Wiley & Sons, Inc. United State of America. p. 115-148

Smith, P. (1966). The microbial ecology of sludge methanogenesis. Developments in Industrial Microbiology, 7, 156–161.

Stierle, A., Strobel, G. & Stierle, D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260, 214-216.

Suffness, M.V. 1995. Taxol: science and applications. USA: CRC Press; 1995, p. 426.

Vongpaseuth, K. & Roberts, S.C. (2007). Advancements in the understanding of Paclitaxel metabolism in tissue culture. Curr Pharm Biotechnol, 8, 219–36

Wang, F. & Lee, S.Y. (1997). Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl Environ Microbiol, 63, 3703–3706.

Yuan, J.I., BI, J-N., YAN, B. & ZHU, X-D. (2006). Taxol-producing Fungi: A New Approach to Industrial Production of Taxol. Chinese Journal Of Biotechnology, 22, 1–6.

Zeikus, J.G. (1977). The biology of methanogenic bacteria. Bacteriological Reviews, 41, 514–541.

Zhang, X –X., Cheng, S –P., Zhu, C–J. & Sun, S–L. (2006). Microbial PAH-degradation in soil : degradation pathways and contributing factors. Pedosphere, 16, 555-565.

Zhou, X., Zhu, H., Lu, L., Lin, J. & Tang, K. (2010). A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol, 86, 1707–1717.




DOI: https://doi.org/10.20886/jpks.2018.2.1.13-26

Refbacks

  • Saat ini tidak ada refbacks.


Jurnal Penelitian Kehutanan Sumatrana