ZONASI KERENTANAN AIR TANAH MENGGUNAKAN METODE COP DAN APLIS DI DAERAH ALIRAN SUNGAI GREMENG, DESA UMBULREJO, PONJONG, GUNUNGKIDUL (Zonation of ground water vulnerability using COP and APLIS methods in Gremeng Watershed, Umbulrejo Village, Ponjong, Gunungkidul)

Ekha Yogafanny, Titi Tiara Anasstasia, Vindy Fadia Utama

Abstract


ABSTRACT

Umbulrejo Village, Ponjong, Gunungkidul has karst and non-karst landforms with several water sources including springs, rivers, and wells that can be used to meet daily water needs. The existence of ponor and diaklas in karst landforms in this village can be a gateway for pollutants from the surface to groundwater. This causes the water sources in the karst landforms to be susceptible to pollution. This study aims to determine the zonation of groundwater vulnerability by using two methods, namely the COP (Concentration of Flow, Overlaying Layers, Precipitation) and APLIS (Altitude, Slope, Lithology, Infiltration, Soil) methods, and to analyze the quality of water sources in each of the vulnerable zones of groundwater. Zoning of groundwater vulnerability using the COP method in the study area resulted in 4 classes of vulnerability, which were low, medium, high and very high, whereas using the APLIS method produced low and medium classes. The areas classified as moderate, high, and very high vulnerable zone of groundwater lied on limestone or karst landform. The water turbidity, TSS, TDS, DO, and hardness met the water quality standard, while COD did not meet the standard. The high concentration of COD indicated contamination of groundwater by human activities, especially in the karst landforms. The hardness parameter has a representative value to the zonation level of groundwater vulnerability. The higher the level of groundwater vulnerability was the higher concentration of groundwater hardness. Hardness is caused by natural solutional processes of limestone in the research area.

Keywords: groundwater vulnerability; COP; APLIS

 

ABSTRAK

Desa Umbulrejo, Ponjong, Gunungkidul memiliki bentuk lahan karst dan non-karst  dengan beberapa sumber air diantaranya mata air, sungai, dan sumur yang dapat digunakan untuk memenuhi kebutuhan domestik warga. Adanya ponor dan diaklas (rekahan) pada bentuk lahan karst di desa ini dapat menjadi pintu masuk polutan dari permukaan menuju air bawah permukaan. Hal ini menyebabkan sumber air pada bentuk lahan karst rentan terhadap pencemaran. Penelitian ini bertujuan untuk mengetahui zonasi tingkat kerentanan air tanah dengan menggunakan dua metode penilaian yaitu metode COP (Concentration of Flow, Overlaying Layers, Precipitation) dan APLIS (Altitude, Slope, Lithology, Infiltration, Soil) serta untuk menganalisis kualitas sumber air pada tiap zonasi kerentanan yang dihasilkan dari kedua metode tersebut. Zonasi kerentanan air tanah dengan metode COP di daerah penelitian menghasilkan 4 kelas kerentanan yaitu rendah, sedang, tinggi dan sangat tinggi sedangkan dengan metode APLIS, zonasi kerentanan menghasilkan kelas rendah dan sedang. Daerah dengan zona kerentanan air tanah kelas sedang, tinggi dan sangat tinggi terletak pada bentuk lahan batugamping. Berdasarkan hasil laboratorium kualitas air, parameter kekeruhan, TSS, TDS, DO, dan kesadahan sesuai baku mutu, sedangkan COD tidak sesuai dengan baku mutu. Tingginya konsentrasi COD menunjukan adanya pencemaran air tanah oleh aktivitas manusia terutama yang berada didaerah pada bentuk lahan karst. Parameter kesadahan memiliki nilai yang representatif terhadap tingkat zonasi kerentanan air tanah. Semakin tinggi tingkat kerentanan air tanah, ditunjukkan pula dengan semakin tingginya konsentrasi kesadahan air tanahnya. Kesadahan disebabkan oleh proses alami pelarutan batu gamping yang ada di daerah penelitian. 

Kata kunci: Kerentanan air tanah; COP; APLIS


Keywords


Kerentanan Air tanah; COP; APLIS

References


Abdullah, T. O., Ali, S. S., Al-Ansari, N. A., & Knutsson, S. (2020). Assessment of groundwater vulnerability to pollution using two different vulnerability models in Halabja-Saidsadiq Basin, Iraq. Groundwater for Sustainable Development, 10. https://doi.org/10.1016/j.gsd.2019.100276

Amil, A., Avcı, P., Çil, A., Muhammetoğlu, A., & Özyurt, N. N. (2020). Significance of validation for karst aquifers’ vulnerability assessments: Antalya Travertine Plateau (Turkey) application. Journal of Contaminant Hydrology, 228. https://doi.org/10.1016/j.jconhyd.2019.103557

Andreo, B., Ravbar, N., & Vías, J. M. (2009). Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: Application to pilot sites. Hydrogeology Journal, 17(3), 749–758. https://doi.org/10.1007/s10040-008-0391-1

Bakalowicz, M. (2005). Karst groundwater: A challenge for new resources. Hydrogeology Journal, 13(1), 148–160. https://doi.org/10.1007/s10040-004-0402-9

Farfán, H., Corvea, J. L., & Bustamante, I. de. (2010). Sensitivity Analysis of APLIS Method to Compute Spatial Variability of Karst Aquifers Recharge at the National Park of Viñales (Cuba). Advances in Research in Karst Media, 19–24. https://doi.org/10.1007/978-3-642-12486-0

Hadžić, E., Lazović, N., & Mulaomerović-Šeta, A. (2015). The Importance of Groundwater Vulnerability Maps in the Protection of Groundwater Sources. Key Study: Sarajevsko Polje. Procedia Environmental Sciences, 25, 104–111. https://doi.org/10.1016/j.proenv.2015.04.015

Jenifer, M. A., & Jha, M. K. (2018). Comprehensive risk assessment of groundwater contamination in a weathered hard-rock aquifer system of India. Journal of Cleaner Production, 201, 853–868. https://doi.org/10.1016/j.jclepro.2018.08.005

Kumar, P., Bansod, B. K. S., Debnath, S. K., Thakur, P. K., & Ghanshyam, C. (2015). Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation. Environmental Impact Assessment Review, 51, 38–49. https://doi.org/10.1016/j.eiar.2015.02.001

Leibundgut, C. (1998). Vulnerability of karst aquifers. IAHS-AISH Publication, 247(247), 45–60.

Machiwal, D., Jha, M. K., Singh, V. P., & Mohan, C. (2018). Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Science Reviews, 185, 901–927. https://doi.org/10.1016/j.earscirev.2018.08.009

Moreno-Gómez, M., Martínez-Salvador, C., Moulahoum, A. W., Liedl, R., Stefan, C., & Pacheco, J. (2019). First steps into an integrated karst aquifer vulnerability approach (IKAV). Intrinsic groundwater vulnerability analysis of the Yucatan karst, Mexico. Water (Switzerland), 11(8). https://doi.org/10.3390/w11081610

Nanou, E. A., & Zagana, E. (2018). Groundwater vulnerability to pollution map for karst aquifer protection (Ziria karst system, Southern Greece). Geosciences (Switzerland), 8(4). https://doi.org/10.3390/geosciences8040125

Oke, S. A., & Fourie, F. (2017). Guidelines to groundwater vulnerability mapping for Sub-Saharan Africa. Groundwater for Sustainable Development, 5, 168–177. https://doi.org/10.1016/j.gsd.2017.06.007

Setiawan, T., Isnaini, S., Asghaf, N. M. A., & Effendi, I. (2018). Sistem Imbuhan Air Tanah Karst Pada Sub-sistem Hidrogeologi Wonosari – Baron, Kabupaten Gunungkidul, Daerah Istimewa Yogyakarta, Berdasarkan Analisis Isotop 18O dan 2H. Jurnal Lingkungan Dan Bencana Geologi, 9(3), 143. https://doi.org/10.34126/jlbg.v9i3.235

Vías, J., Andreo, B., Ravbar, N., & Hötzl, H. (2006). Mapping the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe. Journal of Environmental Management, 91(7), 1500–1510. https://doi.org/10.1016/j.jenvman.2010.02.025

Widiastuti, A. P. (2012). Zonasi Kerentanan Airtanah Bebas terhadap Pencemaran dengan Metode APLIS di Kecamatan Wonosari Kabupaten Gunungkidul. Jurnal Bumi Indonesia, 1(2), 38–46.

Zwahlen, F. (2003). COST Action 620 Vulnerability and Risk Mapping for the Protection of Carbonate (Karst) Aquifers Final Report. Water, January, 297. https://doi.org/PNR61,




DOI: https://doi.org/10.20886/jppdas.2020.4.2.103-120

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal Penelitian Pengelolaan Daerah Aliran Sungai (Journal of Watershed Management Research)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

 

Published by:

Cooperation the Center for Implementation of Standards for Environmental and Forestry Instruments Solo (BPSILHK Solo) with the Indonesian Soil and Water Conservation Society (MKTI)

eISSN : 2579-5511,  pISSN : 2579-6097

 

Secretary:

The Center for Implementation of Standards for Environmental and Forestry Instruments Solo (BPSILHK Solo)
Jl. Jend A. Yani-Pabelan, Kartasura Po.BOX 295 Surakarta 57102
Phone.(0271) 716709 ; Fax(0271) 716959;
Email : sekred.jppdas@gmail.com

Website : http://dassolo.litbang.menlhk.go.id/

Copyright : Jurnal Penelitian Pengelolaan Daerah Aliran Sungai (Journal of Watershed Management Research)