PREDIKSI PERUBAHAN TUTUPAN LAHAN DENGAN MODEL MARKOV CHAIN DAN ANN-MARKOV DI DAS KRUENG ACEH (Land cover change prediction using Markov Chain and ANN-Markov Model in Krueng Aceh Watershed)

Yudi Armanda Syahputra, Muhammad Buce Saleh, Nining Puspaningsih

Abstract


ABSTRACT

Prediction of land cover change will be a consideration in determining the development strategy in the future. There are many methods for predicting  land cover change. It depends on data availability, model algorithms and output needed. The objective of this reasearch was to predict land cover change from 2007 to 2020 in the Krueng Aceh watershed. The method used remote sensing and GIS.  The Markov Chain (MC) and Artificial Neural Network-Markov (ANN-M) models were used to understand the spatio-temporal dynamics of land cover. The accuracy of the classified imagery was obtained from on-screen digitation using  medium resolution landsat-8 OLI image in 2020 with Kappa Accuracy around 84%. Both prediction algorithms used year 2007 (T1) and year 2017 (T2) land cover data to calculated the probability of land cover change prediction in year 2020 (T3). The Kappa Accuracy of both models shows a strong correlation between the simulated land cover maps and the results of visual interpretation (ANN=87.81% and MC=88.69%), this proves high accuracy of both models.

Key words: model; ANN-Markov; landcover change prediction; Markov Chain

 

ABSTRAK

Prediksi perubahan tutupan lahan yang baik akan menjadi pertimbangan dalam menentukan strategi pembangunan di masa depan. Terdapat banyak metode dalam melakukan prediksi perubahan tutupan lahan yang tergantung pada kebutuhan data, algoritma pemodelan yang dilakukan dan output apa saja yang diperlukan. Penelitian ini dilakukan untuk mengkaji model prediksi perubahan tutupan lahan dari tahun 2007 hingga 2020 di DAS Krueng Aceh. Pendekatan yang dilakukan menggunakan penginderaan jauh dan SIG. Model Markov Chain (MC) dan Artificial Neural Network-Markov (ANN-MC) digunakan untuk memahami dinamika spatio-temporal tutupan lahan. Akurasi dari citra penginderaan jauh yang diklasifikasikan diperoleh dari hasil interpretasi visual pada citra resolusi sedang Landsat OLI tahun 2020 dengan nilai Kappa Accuracy sebesar 84%. Kedua model prediksi menggunakan data tutupan lahan tahun 2007 (T1) dan 2017 (T2) untuk membuat probabilitas perubahan yang digunakan dalam memprediksi tutupan lahan pada tahun 2020 (T3). Validasi kedua algoritma menunjukkan korelasi yang kuat dengan peta tutupan lahan 2020, hal tersebut membuktikan kehandalan model kedua simulasi (ANN=87,81% dan MC=88,69%).

Kata kunci: model; ANN-Markov; prediksi tutupan lahan; Rantai Markov


Keywords


: model; ANN-Markov; landcover change prediction; Markov Chain

References


Al-sharif, A. A., & Pradhan, B. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences, 7(10), 4291-4301. doi:10.1007/s12517-013-1119-7

Araya, Y. H., & Cabral, P. (2010). Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sensing, 2(6), 1549-1563.

Arsyad, S. (2010). Konservasi Tanah & Air. Bogor: IPB Press.

BPDASHL Krueng Aceh. (2009). Karakteristik Daerah Aliran Sungai Krueng Aceh (21/ BPDASKA-2/2009). Retrieved from Banda Aceh:

Darmawan, A. R., Puspaningsih, N., & Saleh, M. B. (2017). Kajian Perubahan Tutupan Lahan Dengan Menggunakan Metode Multi Layer Perceptron Dan Logistic Regression Di Taman Nasional Gunung Ciremai. Media Konservasi 22(3), 252-261. doi:10.29244/medkon.22.3.252-261

de Almeida, C. M. (2003). Spatial dynamic modeling as a planning tool: simulation of urban land use change in Bauru and Piracicaba (SP), Brazil. Citeseer, Retrieved from http://mtc-m12.sid.inpe.br/col/sid.inpe.br/jeferson/2003/12.18.07.36/doc/publicacao.pdf

de Noronha Vaz, E., Nijkamp, P., Painho, M., & Caetano, M. (2012). A multi-scenario forecast of urban change: A study on urban growth in the Algarve. Landscape Urban Planning, 104(2), 201-211.

Eastman, J., & Toledano, J. (2018). A short presentation of the Land Change Modeler (LCM). In Geomatic approaches for modeling land change scenarios (pp. 499-505): Springer.

Fan, F., Wang, Y., & Wang, Z. (2008). Temporal and spatial change detecting (1998–2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and ETM+ images. Environmental monitoring assessment, 137(1), 127-147.

Gashaw, T., Bantider, A., & Mahari, A. (2014). Evaluations of land use/land cover changes and land degradation in Dera District, Ethiopia: GIS and remote sensing based analysis. International Journal of Scientific Research in Environmental Sciences, 2(6), 199.

Gebrehiwot, S. G., Bewket, W., Gärdenäs, A. I., & Bishop, K. (2014). Forest cover change over four decades in the Blue Nile Basin, Ethiopia: comparison of three watersheds. Regional Environmental Change, 14(1), 253-266.

Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., & Foley, J. A. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences, 107(38), 16732-16737.

Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., & Zenebe, A. (2017). Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia. Modeling Earth Systems and Environment, 3(4), 1245-1262. doi:10.1007/s40808-017-0397-6

Handayani, M. N., Sasmito, B., & Wijaya, A. P. (2017). 2017, 1811.

Hapsary, M. S. A., Subiyanto, S., & Firdaus, H. S. (2021). Analisis Prediksi Perubahan Penggunaan Lahan Dengan Pendekatan Artificial Neural Network Dan Regresi Logistik Di Kota Balikpapan. Jurnal Geodesi Undip, 10.

Hasan, S., Shi, W., Zhu, X., Abbas, S., & Khan, H. U. A. (2020). Future Simulation of Land Use Changes in Rapidly Urbanizing South China Based on Land Change Modeler and Remote Sensing Data. Sustainability, 12(11), 4350.

Hu, Z., & Lo, C. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, environment urban systems, 31(6), 667-688.

Huang, Y., Yang, B., Wang, M., Liu, B., & Yang, X. (2020). Analysis of the future land cover change in Beijing using CA–Markov chain model. Environmental Earth Sciences, 79(2), 60. doi:10.1007/s12665-019-8785-z

Jaya, B. (2021). Sistem Pengendalian Tata Ruang Berbasis Daya Dukung Lahan Di Kawasan Puncak Kabupaten Bogor. (desertasi), Institut Pertanian Bogor,

Jaya, I. N. S. (2007). Analisis Citra Digital: Persepektif Penginderaan Jauh untuk Pengelolaan Sumberdaya Alam. Bogor: Fakultas Kehutanan IPB.

Jaya, I. N. S. (2010). Analisis Citra Digital: Perspektif Penginderaan Jarak Jauh untuk Pengelolaan Sumberdaya Alam. Bogor: IPB Press.

Karimi, F., Sultana, S., Babakan, A. S., & Suthaharan, S. (2019). An enhanced support vector machine model for urban expansion prediction. J Computers, Environment Urban Systems, 75, 61-75.

Kusniawati, I., Subiyanto, S., & Amarrohman, F. J. (2019). ANALISIS MODEL PERUBAHAN PENGGUNAAN LAHAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DI KOTA SALATIGA. Jurnal Geodesi Undip, 9(1), 1-11.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics, 159-174.

Lennert, J., Farkas, J. Z., Kovács, A. D., Molnár, A., Módos, R., Baka, D., & Kovács, Z. (2020). Measuring and predicting long-term land cover changes in the functional urban area of Budapest. Sustainability, 12(8), 3331.

Leta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability, 13(7), 3740. doi:10.3390/su13073740

Liu, Q., Huang, C., Shi, Z., & Zhang, S. (2020). Probabilistic River Water Mapping from Landsat-8 Using the Support Vector Machine Method. Remote Sensing, 12(9), 1374. doi:10.3390/rs12091374

Mahyuddin, M., Sugianto, S., & Alvisyahrin, T. (2013). Analisis Penutupan Lahan Kawasan Hutan Pada Daerah Aliran Sungai Krueng Aceh Pra dan Pasca Tsunami. Jurnal Manajemen Sumberdaya Lahan, 2(3), 296-303.

Mas, D., & Ahlfeld, D. (2004). Use of Artificial Neural Network Models to Predict Indicator Organism Concentrations in an Urban Watershed. Paper presented at the AGU Spring Meeting Abstracts.

Mas, J. F., Lemoine Rodríguez, R., González López, R., López Sánchez, J., Piña Garduño, A., & Herrera Flores, E. (2017). Land use/land cover change detection combining automatic processing and visual interpretation. European Journal of Remote Sensing, 50(1), 626-635. doi:10.1080/22797254.2017.1387505

Megahed, Y., Cabral, P., Silva, J., & Caetano, M. (2015). Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region—Egypt. International Journal of Geo-Information, 4(3), 1750-1769.

Memarian, H., Balasundram, S. K., Talib, J. B., Sung, C. T. B., Sood, A. M., & Abbaspour, K. (2012). Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. Journal of Geographic Information System.

Mishra, V. N., & Rai, P. K. (2016). A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arabian Journal of Geosciences, 9(4), 249.

Moghaddam, H. K., & Samadzadegan, F. (2009). Urban simulation using neural networks and cellular automata for land use planning. Tehran: Real Corp 2009.

Muis, B. A., Murtilaksono, K., Suratijaya, I. N., & Haridjaja, O. (2016). Analysis potency of water availability and water demand in Krueng Aceh watershed. International Journal of Sciences: Basic and Applied Research, 29(1), 191-201.

Nahavandya, S. K., Kumar, L., & Ghamisi, P. (2017). Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Tehran metropolitan area in Iran. J arXiv preprint arXiv:.01089.

Omrani, H., Charif, O., Gerber, P., Bódis, K., & Basse, R. M. (2012). Simulation of land use changes using cellular automata and artificial neural network. Technical Report, CEPS/INSTEAD.

Paramita, B. A. P., & Danoedoro, P. (2011). Model Cellular Automata Untuk Kajian Perkembangan Wilayah Menggunakan Data Penginderaan Jauh (Studi Kasus: Kawasan Perkotaan Kedungsepur). [Yogyakarta]: Universitas Gadjah Mada, Yogyakarta.

Pérez-Vega, A., Mas, J.-F., & Ligmann-Zielinska, A. (2012).

Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environmental Modelling & Software, 29(1), 11-23. doi:10.1016/j.envsoft.2011.09.011

Pijanowski, B. C., Brown, D. G., Shellito, B. A., & Manik, G. A. (2002). Using neural networks and GIS to forecast land use changes: a land transformation model. Computers, environment urban systems, 26(6), 553-575.

Putra, R. A. (2019). Dinamika Perubahan Tutupan Lahan Di Daerah Tangkapan Air (DTA) Danau Toba. (tesis), Institut Pertanian Bogor, Bogor.

Rahmah, A. N., Subiyanto, S., & Amarrohman, F. J. (2019). Pemodelan Perubahan Penggunaan Lahan dengan Artificial Neural Network (ANN) di Kota Semarang. 2019, 10.

Rahman, F. (2018). Laju Deforestasi dan Degradasi Hutan Pasca Tsunami dan Moratorium Logging di DAS Krueng Aceh. (Bachelor skripsi), Institut Pertanian Bogor, Bogor. Retrieved from http://repository.ipb.ac.id/handle/123456789/93380

Regmi, R., Saha, S., & Balla, M. (2014). Geospatial analysis of land use land cover change modeling at Phewa Lake Watershed of Nepal by using Cellular Automata Markov Model. Int. J. Curr. Eng. Tech, 4(4), 2617-2627.

Reilly, M. K., O’Mara, M. P., & Seto, K. C. (2009). From Bangalore to the Bay Area: Comparing transportation and activity accessibility as drivers of urban growth. Landscape and Urban Planning, 92(1), 24-33. doi:10.1016/j.landurbplan.2009.02.001

Riad, P., Graefe, S., Hussein, H., & Buerkert, A. (2020). Landscape transformation processes in two large and two small cities in Egypt and Jordan over the last five decades using remote sensing data. Landscape Urban Planning, 197, 103766.

Ridwan, F., Ardiansyah, M., & Gandasasmita, K. (2017). Pemodelan perubahan penutupan/penggunaan lahan dengan pendekatan Artificial Neural Network dan Logistic Regression (studi kasus: Das Citarum, Jawa Barat). Buletin Tanah dan Lahan, 1(1), 30-36.

Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., & Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. ISPRS International Journal of Geo-Information, 7(4), 154.

Rimal, B., Zhang, L., Keshtkar, H., Wang, N., & Lin, Y. (2017). Monitoring and Modeling of Spatiotemporal Urban Expansion and Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model. ISPRS International Journal of Geo-Information, 6(9), 288. doi:10.3390/ijgi6090288

Sampurno, R. M., & Thoriq, A. (2016). Klasifikasi Tutupan Lahan Menggunakan Citra Landsat 8 Operational Land Imager (Oli) Di Kabupaten Sumedang (Land Cover Classification Using Landsat 8 Operational Land Imager (Oli) Data In Sumedang Regency). Jurnal Teknotan, 10(2).

Saxena, A., & Jat, M. K. (2019). Capturing heterogeneous urban growth using SLEUTH model. Remote Sensing Applications: Society Environment, 13, 426-434.

Susilo, B. (2011). Pemodelan Spasial Probabilistik Integrasi Markov Chain Dan Cellular Automata Untuk Kajian Perubahan Penggunaan Lahan Skala Regional Di Provinsi Daerah Istimewa Yogyakarta. Jurnal Geografi Gea, 11(2). doi:10.17509/gea.v11i2.1638.g1101

Syphard, A. D., Clarke, K. C., & Franklin, J. (2005). Using a cellular automaton model to forecast the effects of urban growth on habitat pattern in southern California. Ecological Complexity, 2(2), 185-203.

Tang, J., Wang, L., & Yao, Z. (2007). Spatio‐temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm. International Journal of Remote Sensing, 28(15), 3255-3271.

Tarasovicova, Z., Saksa, M., Blazik, T., & Faltan, V. (2013). Change in agricultural land use in the context of ongoing transformational processes in Slovakia. Agriculture/Pol'nohospodárstvo, 59(2).

Uktoro, A. I. (2013). Membangun Model Sawah Lestari Dan Model Prediksi Perubahannya Menggunakan Cellular Automata Di Kabupaten Klaten Provinsi Jawa Tengah. [Yogyakarta]: Universitas Gadjah Mada, Yogyakarta. Retrieved from https://repository.ugm.ac.id/119901/

Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the Kappa statistic. J Fam med, 37(5), 360-363.

Wang, J., & Maduako, I. N. (2018). Spatio-temporal urban growth dynamics of Lagos Metropolitan Region of Nigeria based on Hybrid methods for LULC modeling and prediction. European Journal of Remote Sensing, 51(1), 251-265. doi:10.1080/22797254.2017.1419831

Wang, J., & Mountrakis, G. (2011). Developing a multi-network urbanization model: a case study of urban growth in Denver, Colorado. International Journal of Geographical Information Science, 25(2), 229-253.

Wang, S. Q., Zheng, X., & Zang, X. (2012). Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environmental Sciences, 13, 1238-1245.

Wang, W., Zhang, C., Allen, J. M., Li, W., Boyer, M. A., Segerson, K., & Silander, J. A. (2016). Analysis and prediction of land use changes related to invasive species and major driving forces in the state of Connecticut. Land, 5(3), 25.

Weng, Q. (2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of environmental management, 64(3), 273-284.

Wubie, M. A., Assen, M., & Nicolau, M. D. (2016). Patterns, causes and consequences of land use/cover dynamics in the Gumara watershed of lake Tana basin, Northwestern Ethiopia. Environmental Systems Research, 5(1), 1-12.

Wulandari, R. (2020). Model Spasial Perubahan dan Arahan Penggunaan Lahan Berkelanjutan di DAS Cisadane. (tesis), Institut Pertanian Bogor, Bogor.

Xu, X., Zhang, J., & Zhou, X. (2008). Modeling urban land use changes in Lanzhou based on artificial neural network and cellular automata. Paper presented at the Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Geo-Simulation and Virtual GIS Environments.

Yang, J., Su, J., Chen, F., Xie, P., & Ge, Q. (2016). A local land use competition cellular automata model and its application. International Journal of Geo-Information, 5(7), 106.

Yang, X., Zheng, X.-Q., & Lv, L.-N. (2012). A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecological Modelling, 233, 11-19.

Ye, B., & Bai, Z. (2008, 2008//). Simulating Land Use/Cover Changes of Nenjiang County Based on CA-Markov Model. Paper presented at the Computer And Computing Technologies In Agriculture, Volume I, Boston, MA.

Yeh, A. G.-O., & Li, X. (2002). Urban simulation using neural networks and cellular automata for land use planning. In Advances in spatial data handling (pp. 451-464): Springer.




DOI: https://doi.org/10.20886/jppdas.2021.5.2.185-206

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal Penelitian Pengelolaan Daerah Aliran Sungai (Journal of Watershed Management Research)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

 

Published by:

Cooperation the Center for Implementation of Standards for Environmental and Forestry Instruments Solo (BPSILHK Solo) with the Indonesian Soil and Water Conservation Society (MKTI)

eISSN : 2579-5511,  pISSN : 2579-6097

 

Secretary:

The Center for Implementation of Standards for Environmental and Forestry Instruments Solo (BPSILHK Solo)
Jl. Jend A. Yani-Pabelan, Kartasura Po.BOX 295 Surakarta 57102
Phone.(0271) 716709 ; Fax(0271) 716959;
Email : sekred.jppdas@gmail.com

Website : http://dassolo.litbang.menlhk.go.id/

Copyright : Jurnal Penelitian Pengelolaan Daerah Aliran Sungai (Journal of Watershed Management Research)