KARAKTER MORFOLOGI ISOLAT Phlebiopsis sp.1 JAMUR PENGENDALI HAYATI YANG POTENSIAL UNTUK Ganoderma philippii

Desy Puspitasari, Arif Wibowo, Sri Rahayu, Istiana Prihatini, Anto Rimbawanto

Abstract


Identification of wood decay fungi based on morphological character of isolates is very helpful where identification of fruit body morphology is ambiguous. Nine isolates of Phlebiopsis sp.1 obtained from the isolation root of Eucalyptus pellita in permanent plots with root rot disease have the potential as biological control for G. philippii. The verification based on ITS sequences of rDNA showed that these isolates were closely related to P. gigantea and P. flavidoalba. The characterisation of morphological was performed on isolates grown on Malt Extract Agar media with sawdust. Based on the macroscopic observation, the isolates were categorized into three different morphotypes: (1). Cottony mycelium from the beginning to the advanced stage, one isolate (Pb5); (2). Cottony at the beginning and then turned into farinaceous to floccose on the advanced stage, 7 isolates (Pb1, Pb2, Pb4, PB6, PB8, Pb9, Pb10); (3). Absent at the beginning and then turned into zonate on the advanced stage, one isolate (Pb11). Morphotype 2 is the dominant group of Phlebiopsis sp.1 isolates, with fine tufts of white mycelium which turned brown on the surface of the colonies. Morphotype 3 has very different morphological characters than other 8 isolates, it has very characteristic concentric circle with different color and texture of each circle. The growth rate of mycelium ranged between 10.70 - 10.85 cm²/day for morphotype 1 and 2; 1.95 cm²/day for morphotype 3.

Keywords


Phlebiopsis sp.1; Biocontrol; morphology; isolate; Ganoderma philippii

Full Text:

PDF

References


Agustini, L., Francis, A., Glen, M., Indrayadi, H., & Mohammed, C. L. (2014). Signs and identification of fungal root-rot pathogens in tropical Eucalyptus pellita plantations. Forest Pathology, 44(6), 486–495. https://doi.org/10.1111/efp.12145

Agustini, L., Wahyuno, D., Indrayadi, H., & Glen, M. (2014). In vitro interaction between Phlebiopsis sp. and Ganoderma philippii isolates. Forest Pathology, 44(6), 472–476. https://doi.org/10.1111/efp.12143

Coetzee, M. P., Wingfield, B. D., Golani, G. D., Tjahjono, B., Gafur, A., & Wingfield, M. J. (2011). A single dominant Ganoderma species is responsible for root rot of Acacia mangium and Eucalyptus in Sumatra. Southern Forests: A Journal of Forest Sciense, 73(3–4), 175–180. https://doi.org/10.2989/20702620.2011.639488

European Food Safety Authority. (2013). Conclusion on the peer review of the pesticide risk assessment of the active substance Phlebiopsis gigantea. EFSA Journal, 11(1). https://doi.org/10.2903/j.efsa.2013.3033

Eyles, A., Beadle, C., Barry, K., Francis, A., Glen, M., & Mohammed, C. (2008). Management of fungal root-rot pathogens in tropical Acacia mangium plantations. Forest Pathology, 38(5), 332–355. https://doi.org/10.1111/j.1439-0329.2008.00549.x

Glen, M., Bougher, N. L., Francis, A. A., Nigg, S. Q., Lee, S. S., Irianto, R., … Mohammed, C. L. (2009). Ganoderma and Amauroderma species associated with root-rot disease of Acacia mangium plantation trees in Indonesia and Malaysia. Australasian Plant Pathology, 38(4), 345–356. https://doi.org/10.1071/AP09008

Glen, M., Yuskianti, V., Puspitasari, D., Francis, A., Agustini, L., Rimbawanto, A., … Mohammed, C. . (2014). Identification of basidiomycete fungi in Indonesian hardwood plantations by DNA barcoding. Forest Pathology, 44(6), 496–508. https://doi.org/10.1111/efp.12146

Hood, I. A. (2006). The mycology of the Basidiomycetes. In K. Potter, A. Rimbawanto, & C. Beadle (Eds.), Heart rot and root rot in tropical Acacia plantations (pp. 34–45). Yogyakarta, Indonesia: ACIAR Proceedings No. 124 Canberra. Retrieved from http://aciar.gov.au/files/node/735/Proceedings 124(web) part 4.pdf

Irianto, R. S. B., Barry, K., Hidayati, N., Ito, S., Fiani, A., Rimbawanto, A., & Mohammed, C. (2006). Incidence and spatial analysis of root rot of Acacia mangium in Indonesia. Journal of Tropical Forest Science, 18(3), 157–165. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.591.67&rep=rep1&type=pdf

Jülich, W. (1978). Studies in resupinate Basidiomycetes—V. Some new genera and species. Persoonia - Molecular Phylogeny and Evolution of Fungi, 10(1), 137–140. Retrieved from http://www.repository.naturalis.nl/document/569854

Lee, S. S. (1999). Forest health in plantation forests in south-east asia. Australasian Plant Pathology, 28(4), 283–291. https://doi.org/10.1071/AP99045

Mgbeahuruike, A. C., Sun, H., Fransson, P., Kasanen, R., Daniel, G., Karlsson, M., & Asiegbu, F. O. (2011). Screening of Phlebiopsis gigantea isolates for traits associated with biocontrol of the conifer pathogen Heterobasidion annosum. Biological Control, 57(2), 118–129. https://doi.org/10.1016/j.biocontrol.2011.01.007

Mohammed, C. L., Barry, K. M., & Irianto, R. S. B. (2006). Heart rot and root rot in Acacia mangium: identification and assessment. In K. Potter, A. Rimbawanto, & C. Beadle (Eds.), Heart rot and root rot in tropical Acacia plantations (pp. 26–33). Yogyakarta, Indonesia: ACIAR Proceedings No. 124 Canberra. Retrieved from http://aciar.gov.au/files/node/735/Proceedings 124 (web) part 3.pdf

Pratt, J. E., Gibbs, J. N., & Webber, J. F. (1999). Registration of Phlebiopsis gigantea as a forest biocontrol agent in the UK: Recent experience. Biocontrol Science and Technology, 9(1), 113–118. https://doi.org/10.1080/09583159929974

Puspitasari, D., Yuskianti, V., Rimbawanto, A., Glen, M., & Mohammed, C. (2012). Identification of several Ganoderma species causing root rot in Acacia mangium plantation in Indonesia. In C. Mohammed, C. Beadle, J. Roux, & S. Rahayu (Eds.), Proceeding of International Conference on The Impacts of Climate Change to Forest Pests and Diseases in The Tropics (pp. 157–161). Yogyakarta, Indonesia: Faculty of Forestry, Universitas Gadjah Mada. Retrieved from http://ecite.utas.edu.au/94082

Rakib, M. R. M., Bong, C.-F. J., Khairulmazmi, A., & Idris, A. S. (2014). Genetic and morphological diversity of Ganoderma species isolated from infected oil palms (Elaeis guineensis). International Journal of Agriculture and Biology, 16, 691–699. Retrieved from http://www.fspublishers.org

Ratnaningtyas, N. . (2008). Biologi Ganoderma sp. isolat lokal terseleksi. Universitas Gadjah Mada, Yogyakarta (Unpublished).

Sidorov, E. (2005). Efficacy of different concentrations of Rotstop ® and Rotstop S and imperfect cover of Rotstop S against Heterobasidion spp. infections on Norway spruce stumps. (Final thesis no. 66). Southern Swedish Forest Research Centre Alnarp. Swedish University of Agricultural Sciences. Retrieved from https://stud.epsilon.slu.se/11635/1/sidorov_e_171002.pdf

Stalpers, J. A. (1978). Identification of wood-inhabiting Aphyllophorales in pure culture. Studies in Mycology (Vol. 16). Centraal bureau voor Schimmelcultures. Retrieved from http://www.westerdijkinstitute.nl/publications/Sim16/full text.htm

Yuskianti, V., Glen, M., Puspitasari, D., Francis, A., Rimbawanto, A., Gafur, A., … Mohammed, C. L. (2014). Species-specific PCR for rapid identification of Ganoderma philippii and Ganoderma mastoporum from Acacia mangium and Eucalyptus pellita plantations in Indonesia. Forest Pathology, 44(6), 477–485. https://doi.org/10.1111/efp.12144




DOI: https://doi.org/10.20886/jpth.2016.10.1.51-61

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Jurnal Pemuliaan Tanaman Hutan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Jurnal Pemuliaan Tanaman Hutan Indexed By:

 

Copyright of Jurnal Pemuliaan Tanaman Hutan (JPTH)

eISSN : 2527-8665   pISSN : 1693-7147

48