Rina Laksmi Hendrati, Siti Husna Nurrohmah


Calliandra calothyrsus, a rhizobium-associated legume, fixes atmospheric nitrogen by forming root nodules. Rhizobium availability is crucial for Calliandra’s growth especially on new sites. Additive or synergic effects of rhizobium and mycorrhiza are found to improve seedling quality. Genetically improved Calliandras require optimum silvicultural practices including rhizobium and mycorrhiza application and differences among families need to be observed. This followed with combination treatment of 5g rhizobium and different mycorrhiza level at and 10g applied to 5 families in 30 X 30 cm polybag. Assessments were for leaf number, height, diameter at 1, 4 and 8 weeks and number of root nodules at 4 and 8 weeks after application. Results show that rhizobium application has no significant effects although it enhances grow, while mycorrhiza application improve leaf number after 14 weeks. Second experiment for 3.5 month seedlings, indicates interaction on family-mycorrhiza level to seedling height and root nodules. Very positive correlations show that more root nodules improved leaf number (r=0.41**), height (r=0.3*) and diameter (r=0.45**) up to planting time. Quite cheap rhizobium and mycorrhiza application is therefore beneficial to optimize the growth of genetically improved Calliandra, although genotype differences may eXist.


Calliandra calothyrsus; family; improved; rhizobium; mycorrhiza

Full Text:



Ajeesh, R., Kumar, V., Santoshkumar, A. V, & K, S. G. (2015). Harnessing Arbuscular Mycorrhizal Fungi (AMF) for Quality Seedling Production, Res. J. of Agriculture and Forestry Sci., 3(6), 22–40.

Bala, A., Murphy, P., & Giller, K. E. (2003). Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Molecular Ecology, 12(4), 917–929. doi: 10.1046/j.1365-294X.2003.01754.x

Bompadre, M. J., Pérgola, M., Bidondo, L. F., Colombo, R. P., Silvani, V. A., Pardo, A. G., ... Godeas, A. M. (2014). Evaluation of Arbuscular Mycorrhizal Fungi Capacity to Alleviate Abiotic Stress of Olive (Olea europaea L.) Plants at Different Transplant Conditions. The Scientific World Journal, 2014, 1-12. doi: 10.1155/2014/378950

Brockwell, J., Searle, S.D., Jeavons, A.C., & Waayers, M. (2005). Nitrogen Fixation in Acacias: an Untapped Resource for Sustainable Plantations, Farm Forestry and Land Reclamation, ACIAR (Australian Centre for International Agricultural Research) Monograph No. 115, pp 132

Bücking, H., Liepold, E., & Ambilwade, P. (2012). The Role of the Mycorrhizal Symbiosis in Nutrient Uptake of Plants and the Regulatory Mechanisms Underlying These Transport Processes. Intact open Science Chapter 4, 107-138. doi: 10.5772/52570

Drinnan, A.N., & Ladiges, P. (1991). Floral Development and Systematic Position of Eucalyptus curtisii (Myrtaceae). Australian Systematic Botany, 4(3), 539–551. doi: 10.1071/SB9910539

Garcia, K., & Zimmermann, S. D. (2014). The role of mycorrhizal associations in plant potassium nutrition (Mini Review). Frontiers in Plant Science, 5, 1–9. http://doi.org/10.3389/fpls.2014.00337

Goss, M.J., & de Varennes, A. (2002). Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biology & Biochemistry, 34(8), 1167–1173. doi: 10.1016/S0038-0717(02)00053-6

Hajek, P., Hertel, D., & Leuschner, C. (2013). Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides). Frontiers in Plant Sciences, 4(415), 1-11. doi:10.3389/fpls.2013.00415

Javot, H., Pumplin, N., & Harrison, M. J. (2007). Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ., 30(3), 310–322. http://doi.org/doi: 10.1111/j.1365- 3040.2006.01617.x

Jin, H. R., Liu, J., Liu, J., & Huang, X. W. (2012). Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review. China Life Sci., 55(6), 474–482. doi: 10.1007/s11427-012-4330-y

Marschener, H., & Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159(1), 89-102. http://doi.org/doi: 10.1007/BF00000098

Marulanda, A., Barea, J., & Azco´n, R. (2009). Stimulation of Plant Growth and Drought Tolerance by Native Microorganisms (AM Fungi and Bacteria) from Dry Environments: Mechanisms Related to Bacterial Effectiveness. J. Plant Growth Regul., 28(2), 115–124. http://doi.org/doi. 10.1007/s00344-009-9079-6

Müller, T., Avolio, M., Olivi, M., Benjdia, M., Rikirsch, E., & Kasaras, A. (2007). Nitrogen transport in the ectomycorrhiza association: the Hebeloma ylindrosporum- Pinus pinaster model. Phytochemistry, 68(1), 41–51. http://doi.org/doi: 10.1016/j.phytochem.2006.09.021

Pijut, P.M., Woeste, K.E., & Michler, C. H. (2011). Promotion of Adventitious Root Formation of Difficult-to-Root Hardwood Tree Species. In Horticultural Reviews (pp. 2013–251). Wiley-Blackwell.

Plassard, C., & Dell, B. (2010). Phosphorus nutrition of mycorrhizal trees. Tree Physiology, 30(9),1129–1139. http://doi.org/10.1093/treephys/tpq063

Pottinger, A.J, & Dunsdon, A. J. (2001). Provenance Trials. In Tropical Forestry Paper No. 40. Calliandra callothyrsus: An Agroforestry Tree for the humid Tropics. Oxford UK: Oxford University Press.

Purwantari, N.D., & Sutedi, E. (2005). Respon inokulasi strain mutan rhizobia pada Calliandra calothyrsus. Jurnal Ilmu Ternak dan Veteriner, 10(3), 182-189.

Russell, A. J., Bidartondo, M. I., Butterfield, B. G., & Russell, A. J. (2002). The root nodules of the Podocarpaceae harbour arbuscular mycorrhizal fungi. New Phytologist, 156(2), 283–295. doi:10.1046/j.1469-8137.2002.00504.x

Saharan, B. S., & Nehra, V. (2011). Plant Growth Promoting Rhizobacteria : A Critical Review. Life Sciences and Medicine Research, 1–30.

Sanginga, N., Thottappilly, G., & Dashiell, K. (1999). Effectiveness of rhizobia nodulating recent promiscuous soybean selections in the moist savanna of Nigeria. Soil Biol. Biochem., 32(1), 127–133. doi: 10.1016/S0038-0717(99)00143-1

Sedgley, M., & Griffin, A. R. (1989). Sexual reproduction of tree crops. London, UK: Academic Press.

Wilson, J., & Coutts, M. P. (1985). Exploiting tree cropsymbiont specificity. In M.G.R. Cannell & J.E. Jackson (eds.) Attributes of trees as crop plants. (pp. 359–379). Abbotts Ripton. Institute of Terrestrial Ecology.

Xie, Z. P., Staehelin, C., Vierheilig, H., Wiemken, A., Jabbouri, S., Broughton, W. J., … Boller, T. (1995). Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiology, 108(4), 1519–1525. http://doi.org/10.1104/pp.108.4.1519

Younesi, O., Moradi, A., & Namdari, A. (2013). Influence of arbuscular mycorrhiza on osmotic adjustment compounds and antioxidant enzyme activity in nodules of salt-stressed soybean ( Glycine max ), Acta agriculturae Slovenica, 101(2), 219–230. http://doi.org/10.2478/acas-2013-0018

DOI: http://dx.doi.org/10.20886/jpth.2016.10.2.71-81


  • There are currently no refbacks.

Copyright (c) 2016 Rina Laksmi Hendrati, Siti Husna Nurrohmah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright of Jurnal Pemuliaan Tanaman Hutan

(e-ISSN: 2527-8665, p-ISSN: 1693-7147).