KERAGAMAN GENETIK POPULASI KAYU KUKU (Pericopsis mooniana, (THWAITES)THWAITES) DI HUTAN LAMEDAI BERDASARKAN PENANDA RAPD

ILG Nurtjahjaningsih, AYPBC Widyatmoko, Anto Rimbawanto

Abstract


Vulnerable status of kayu kuku (Pericopsis mooniana) is due to heavily wood harvesting. Aim in this study is to asses genetic diversity and structure of kayu kuku at Lamedai forest, Southeast Sulawesi using RAPD markers. Leaves samples were collected from 4 natural populations at Lamedai forest i.e. Lamedai natural reserve, Lamedai village, Balijaya and Tangketada. The 22 polymorphic loci of 5 RAPD markers were subjected to the genetic analysis, binary data were calculated by GenAlex software to obtain parameters in genetic diversity within population and analysis molecular variant (AMOVA), while PopTree software was used to construct a dendrogram. Results showed that genetic diversity of the 4 populations was in moderate level (mean He: 0.361 ± 0.017) and the values was similar each other. There was no private allele at any populations, indicating that there was no genetic specification. A dendrogram analysis showed that Lamedai natural reserve genetically closed to Tangketada population and Balijaya, while Lamedai was separated into another cluster. AMOVA analysis showed 13% genetic diversity were observed among populations. In conclution, kayu kuku at Lamedai forest might be a large and continuous population in ancient period.


Keywords


natural reserve; genetic diversity; private allele; dendrogram; AMOVA

Full Text:

PDF

References


Beseega, C., Pometti, C., Campos, C., Saidman, B., & Vilardi, J. (2017). Implications of mating system and pollen dispersal indicates for management and conservation of the semi-arid species Prosopis flexuosa (Leguminosae). Forest Ecology and Management, 400, 218–227. https://doi.org/10.1016/j.foreco.2017.06.007

Bittencourt, J. V. M., & Sebben, A. M. (2009). Genetic effects of forest fragmentation in highdensity Araucaria angustifolia populations in Southern Brazil. Tree Genetics & Genomes, 5(4), 573–582.

Browne, L., Ottewell, K., Sork, V. L., & Karubian, J. (2018). The relative contributions of seed and pollen dispersal to gene flow and genetic diversity in seedlings of a tropical palm. Molecular Ecology, 27, 3159–3173.

Butcher, P., Harwood, C., & Quang, T. H. (2004). Studies of mating systems in seed stands suggest possible causes of variable outcrossing rates in natural populations of Acacia mangium. Forest Genetics, 11(3–4), 303–309.

Dlamini, P., Zachariades, C., & Downs, C. T. (2018). The effect of frugivorous birds on seed dispersal and germination of the invasive Brazilian pepper tree (Schinus terebinthifolius) and Indian laurel (Litsea glutinosa). South African Journal of Botany, 114, 61–68.

Eliades, N.-G. H., Fady, B., Gailing, O., Leinemann, L., & Finkeldey, R.(2018). Significant patterns of fine-scale spatial genetic structure in a narrow endemic wind-dispersed tree species, Cedrus brevifolia Henry. Tree Genetics & Genomes, 14: 15.

Fidalgo, A. de O., Guimaraes, D. M., Caldiron, G. T., & Barbosa, J. M. (2018). Reproductive ecology of two pioneer legumes in a coastal plain degraded by sand mining. Hoehnea, 45(1). https://doi.org/10.3389/fgebe.2018.00490

Frantz, A. C., Poutois, J. T., Heuertz, M., Schley, L., Flamand, M. C., Krier, A., … T. Burke. (2006). Genetic structure and assigment tests demonstrate illegal translocation of red deer (Cervus elaphus) into a continuous population. Molecular Ecology, 15, 3191–3203.

Gomez, P., Lillo, D., & Alejandra V. Gonzalez. (2012). Pollination and breeding system in Adesmia bijuga Phil. (Fabaceae), a critically endangered species in Central Chili. Gayana Botany, 69(2), 286–295.

Kitamura, K., Nakanishi, A., Lian, C., & Goto, S. (2018). Distinctions in fine-scale spatial genetic structure between growth stages of Picea jezoensis Carr. Frontiers in Genetics.

Kruse, S., Epp., L. S., Wieczorek, M., Pestryakova, L. A., Stoof Leichsenring, K. R., & Herzschuh, U. (2018). High gene flow and complex treeline dynamics of Larix Mill. stands on the Taymyr Peninsula (north-central Siberia) revealed by nuclear microsatellites. Tree Genetics & Genomes, 14(2), 14–19. https://doi.org/https://doi.org/10.1007/s11295018-1235-3

Liber, Z., Zidovec, V., Bogdanovic, S., Radosavljevic, I., Prusa, M., Filipovic, M., … Satovic, Z. (2014). Genetic diversity of dalmatian sage (Salvia officinalis L.) as assessed by RAPD markers. Agriculturae Conspectus Scientificus, 79(2), 77–84.

Maldia, L. S. J., Matsumoto, A., Ueno, S., Kanazashi, A., Kanno, M., & Namikawa, K. (2017). Geographic patterns of genetic variation in nuclear and chloroplast genomes of two related oaks (Quercus aliena and Q. serrata) in Japan: implications for seed and seedling transfer. Tree Genetics & Genomes, 13(121).

Mendonca, E. G., Anderson Marcos de Souza, F. de A. V., Estopa, R. A., Reis, C. A. F., & Dulcinela de Carvalho. (2014). Using Random Amplified Polymorphic DNA to Assess Genetic Diversity and Structure of Natural Calophyllum brasiliense (Clusiaceae) Populations in Riparian Forests. Hindawi Internatioan Journal of Forest Research.

Micheneau, C., Dauby, G., Bourland, N., Doucet, J.-L., & Olivier J. Hardy. (2011). Development and characterization of microsatellite loci in Pericopsis elata (Fabaceae) using a cost-efficient approach. American Journal of Botany, e268–e270.

Mueller, T., Lenz, J., Caprano, T., Fiedler, W., & Katrin Bohning-Gaese. (2014). Large frugivorous birds facilitate functiaonal connectivity of fragmented landscapes. Journal of Appiled Ecology, 51, 684–692.

Nurtjahjaningsih, I. L. G., Herawan, T., Reza Permatasari Rachma, & Rimbawanto, A. (2018). Pengujian penanda Random Amplified Polymorphism DNA untuk mengetahui kestabilan genetik klon jati (Tectona grandis). Jurnal Pemuliaan Tanaman Hutan, 12(2), 105–135.

Nurtjahjaningsih, I. L. G., Saito, Y., Tsuda, Y., & Ide, Y. (2007). Genetic diversity of parental and offspring populations in a Pinus merkusii seedling seed orchard detected by microsatellite markres. Bulletin-Tokyo University Forest, 118, 1–14.

Nurtjahjaningsih, I. L. G., Sukartiningsih, Kurokochi, H., Saito, Y., & Ide, Y. (2017). Genetic structure of the tropical tree Eusideroxylon zwageri in Indonesia revealed by chloroplast DNA phylogeography. Forests, 8(7). https://doi.org/10.3390/f8070229

Nurtjahjaningsih, I. L. G., Sukartiningsih, Saranti, A. P. A., Sulistyawati, P., & Rimbawanto, A. (2017). Kekerabatan genetik anakan alam ulin (Eusideroxylon zwageri TEIJSM. & BINN.) menggunakan penanda Random Amplified Polymorphism DNA. Jurnal Pemuliaan Tanaman Hutan, 11(1), 25–31.

Nurtjahjaningsih, I. L. G., Sulistyawati, P., & Rimbawanto, A. (2016). Struktur genetik Calliandra calothyrsus di Indonesia menggunakan penanda Random Amplified Polymorphism DNA (RAPD). Jurnal Pemuliaan Tanaman Hutan, 10(1), 31–38.

Nurtjahjaningsih, I. L. G., Sulistyawati, P., Widyatmoko, A., & Rimbawanto, A. (2012). Karakteristik pembungaan dan sistem perkawinan nyamplung (Calophyllum inophyllum) pada hutan tanaman di Watusipat, Gunung Kidul. Jurnal Pemuliaan Tanaman Hutan, 6(2), 65–80.

Peakall, R., & Smouse, P. E. (2006). GenAlex 6: Genetic analysis in excel, Population genetic software for teachng and research. Molecular Ecology Notes, 6, 288–295.

Rosmaina, & Zulfahmi. (2013). Genetic diversity of Eurycoma longifolia Jack based on random amplified polymorphic DNA marker. JMHT, 19(2), 138–144.

Shiraishi, S., & Watanabe, A. (1995). Identifikasi of chloroplast genome between Pinus densiflora Sieb et Zucc and P. thumbergii Parl based on the polymorphism in rbct gene. Journal of Japanese Forestry Society, 77, 429–436.

Soerianegara, I., & Lemmens, R. H. M. J. (1994). Plant Resources of South-East Asia 5: (1) Timber trees: Major commercial timbers. (I. Soerianegara & R. H. M. J. Lemmens, Eds.). Bogor Indonesia: Prosea Foundation.

Takesaki, N., Nei, M., & Tamura, K. (2014). POPTREEW: Web version of POPTREE for Constructing Population Trees from Allele Frequency Data and Computing Some Other Quantities. Molecular Biology Evolution, 31(6), 1622–1624.

Torokeldiev, N., Ziehe, M., Gailing, O., & Finkeldey, R. (2019). Genetic diversity and structure of natural Juglans regia L. populations in the southern Kyrgyz Republic revealed by nuclear SSR and EST-SSR markers. Tree Genetics & Genomes, 15(5). https://doi.org/https://doi.org/10.1007/s11295-018-1311-8

Tsuda, Y., & Ide, Y. (2005). Wide-range analysis of genetic structure of Betula maximowicziana, along-lived pioneer tree species and noble hardwood in the cool temperate zone of Japan. Molecular Ecology, 14(13).

Vieria, F. de A. V., Fajardo, C. G., Souza, A. M. de, & Carvalho, D. de. (2010). Landscape-level and fine-scale genetic structure of the Neotropical tree Protium spruceanum (Burseraceae). International Journal of Forestry Research. https://doi.org/doi:10.1155/2010/120979

Villalobos-Barrantes, H. M., Garcia, E., Lowe, A. J., & Albertazzi, F. (2015). Genetic analysis of the dry forest timber tree Sideroxylon capiri in Costa Rica using AFLP. Plant Systematics and Evolution, 301(11). https://doi.org/DOI 10.1007/s00606-014-1049-1

Yuniarti, N., & Syamsuwida, D. (2011). Kayu Kuku (Pericopsis mooniana THW). In Atlas Benih Tanaman Hutan Indonesia Jilid II (pp. 32–34). Bogor: Balai Penelitian Teknologi Perbenihan Tanaman Hutan.




DOI: https://doi.org/10.20886/jpth.2019.13.1.25-32

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Jurnal Pemuliaan Tanaman Hutan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Jurnal Pemuliaan Tanaman Hutan Indexed By:

 

Copyright of Jurnal Pemuliaan Tanaman Hutan (JPTH)

eISSN : 2527-8665   pISSN : 1693-7147

48