Development and Validation of Volume Prediction Model for Balangeran (Shorea balangeran (Korth.) Burck) In Central Kalimantan

Muhammad Abdul Qirom

Abstract


Estimation model of tree volume must be high in accuracy and precisions to estimate stand potential precisely. This paper determines and validates the estimation model of Shorea balangeran volume grown in Central Kalimantan, Indonesia. There were three phases of model development which include 52 trees for model progress, 23 trees for model validation, and 10 trees for external model validation. The calculation model used linear and non-linear models with diameter, diameter and height, and diameter and height combination as independent variables. The criteria of the best model was determined by statistical analyses such as coefficient determination, relative and aggregative deviation, bias, precisions and accuracy of estimation, AIC (Akaike’s Information Criterion). The result of the study showed that the model with diameter as single variable was not complied with the selected best model criteria (aggregative deviation; AD< 1 % and relative deviation: RD< 8 %). The addition of tree height on model estimation increased the coefficient determination of 6.54% and the model with diameter and height as independent variable was satisfied with the criteria (AD and RD criteria). The best model of Balangeran was with coefficient determination of 89.77 %. However, the best model was not applicable for other sites with different stand characteristics

Keywords: volume, model, Balangeran, validation, stand, tree


References


Abdurachman. (2012). Tabel volume batang di bawah pangkal tajuk pohon keruing (Dipterocarpus acutangulus) di Labanan Berau Kalimantan Timur. Jurnal Penelitian Dipterokarpa, 6(1), 31–39.

Abdurachman. (2013). Model pendugaan volume pohon Dipterocarpus Confertus V.Slotten di Wahau Kutai Timur, Kalimantan Timur. Jurnal Penelitian Dipterokarpa, 7(1), 29–34.

http://doi.org/10.1017/CBO9781107415324.004

Abdurachman, & Purwaningsih, S. (2012). Tabel volume batang di bawah pangkal tajuk jenis tengkawang (Shorea macrophylla) di PT Gunung Gajah Abadi, Kalimantan Timur. Jurnal Penelitian Dipterokarpa, 6(2), 131–139.

Arevalo, C. B. M., Volk, T. A., Bevilacqua, E., & Abrahamson, L. (2007). Development and validation of aboveground biomass estimations for four Salix clones in central New York. Biomass and Bioenergy, 31(1), 1–12.

http://doi.org/10.1016/j.biombioe.2006.06.012

Armecin, R. B., & Coseco, W. C. (2012). Abaca (Musa textilis Nee) allometry for above-ground biomass and fiber production. Biomass and Bioenergy, 46(0), 181–189. http://doi.org/10.1016/j.biombioe.2012.09.004

Ashton, P. . (1982). Dipterocarpaceae. Flora Malesiana, 9, 237–552.

Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684–1694.

http://doi.org/10.1016/j.foreco.2009.01.027

Bawa, K. (1998). Conservation of Genetic Resources in The Dipterocarpaeae. dalam S. Appanah & JM Turnbull (Eds.), A Review of Dipterocarps, Taxonomy, Ecology and Silviculture (pp. 45–56). Bogor: CIFOR.

Bitterlich, W. (n.d.). The Spiegel-Relascop [manual] (1 st). Salzburg-Austria.

Blujdea, V. N. B., Pilli, R., Dutca, I., Ciuvat, L., & Abrudan, I. V. (2012). Allometric biomass equations for young broadleaved trees in plantations in Romania. Forest Ecology and Management, 264, 172–184. http://doi.org/10.1016/j.foreco.2011.09.042

Brandeis, T. J., Delaney, M., Parresol, B. R., & Royer, L. (2006). Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume. Forest Ecology and Management, 233(1), 133–142. http://doi.org/10.1016/j.foreco.2006.06.012

Brassard, B. W., Chen, H. Y. H., Bergeron, Y., & Paré, D. (2011). Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana, and Populus tremuloides in the boreal forest of Ontario, Canada. Biomass and Bioenergy, 35(10), 4189–4196. http://doi.org/10.1016/j.biombioe.2011.06.045

Brooks, J. R., Jiang, L., & Ozçelik, R. (2008). Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. Forest Ecology and Management, 256(1–2), 147–151. http://doi.org/10.1016/j.foreco.2008.04.018

Fayolle, A., Doucet, J. L., Gillet, J. F., Bourland, N., & Lejeune, P. (2013). Tree allometry in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management, 305, 29–37.

http://doi.org/10.1016/j.foreco.2013.05.036

Giday, K., Eshete, G., Barklund, P., Aertsen, W., & Muys, B. (2013). Wood biomass functions for Acacia abyssinica trees and shrubs and implications for provision of ecosystem services in a community managed exclosure in Tigray, Ethiopia. Journal of Arid Environments, 94, 80–86.

Graza, A. A. (1989). Econometric Model Selection: A New Approach. (J. P. Ancot, A. J. H. Hallet, F. G. Adams, P. Balestra, M. G. Dagenais, D. Kendrick, … W. Welfe, Eds.) (1st ed.). Kluwer Academic Publishers.

Hayne, K. (1987). Tumbuhan Berguna Indonesia (III). Badan Penelitian dan Pengembangan Kehutanan. Departemen Kehutanan.

Herbagung, & Krisnawati, H. (2009). Model taper batang tanaman Khaya anthotheca C.Dc. di Hutan Penelitian Pasir Hantap, Sukabumi, Jawa Barat. Jurnal Penelitian Hutan Dan Konservasi Alam, VI(1), 13–24.

Hilwan, I., Setiadi, Y., & Rachman, H. (2013). Evaluasi pertumbuhan beberapa jenis dipterokarpa di areal revegetasi PT. Kitadin, Kalimantan Timur. Jurnal Silvikuktur Tropika, 4(2), 108–112.

Huang, S., Yang, Y., & Wang, Y. (2003). A Critical Look at procedures for validating growth and yield models. in A. Amaro, D. Reed, & P. Soares (eds.), Modelling Forest System (1st ed., p. 416). CABI Publishing. http://doi.org/10.1093/forestry/cpi037

Hunter, J. T. (2015). Changes in allometric attributes and biomass of forests and woodlands across an altitudinal and rainfall gradient: What are the implications of increasing seasonality due to anthropogenic climate change?. International Journal of Ecology, 2015, 1–10.

http://doi.org/10.1155/2015/208975

Husch, B. (1963). Forest Mensuration and Statistics. New York: The Ronald Press Company.

Husch, B., Beers, T. W., & Kershaw, J. (2002). Forest Mensuration (Fourth). New Jersey: Jhon Wiley and Sons, Inc. Hoboken.

Istomo, & Farida, N. E. (2017). Potensi simpanan karbon di atas permukaan tanah tegakan Acacia nilotica L . ( Willd ) ex . Del . di Taman Nasional Baluran , Jawa Timur. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 7(2), 155–162.

http://doi.org/10.19081/jpsl.2017.7.2.155

Jagodziński, A. M., Dyderski, M. K., Gęsikiewicz, K., Horodecki, P., Cysewska, A., Wierczyńska, S., & Maciejczyk, K. (2018). How do tree stand parameters affect young Scots pine biomass? – Allometric equations and biomass conversion and expansion factors. Forest Ecology and Management, 409(October 2017), 74–83.

http://doi.org/10.1016/j.foreco.2017.11.001

Juliantari, F. (2013). Angka Bentuk dan Model Volume Puspa (Schima wallichii (DC.) Korth) di Hutan Pendidikan Gunung Walat. Bogor: Institut Pertanian Bogor.

Krisnawati, H. (2016). A Compatible estimation model of stem volume and taper for Acacia mangium Willd . plantations. Indonesia Journal of Forestry Research, 3(1), 49–64.

Kuswandi, R. (2016). Model Penduga Volume Pohon Kelompok Jenis Komersial Pada Wilayah Kabupaten Sarmi, Papua Timber Volume Estimation Model for Merchantable Tree Species in Sarmi Regency, Papua, 91–96.

http://doi.org/10.1016/j.jaridenv.2013.03.001

Laar, A. Van, & A. Akca. (1997). Forest Mensuration. Gottingen.: Cuvillier Verlag.

Lima, A. J. N., Suwa, R., De Mello Ribeiro, G. H. P., Kajimoto, T., Dos Santos, J., Da Silva, R. P., … Higuchi, N. (2012). Allometric models for estimating above- and below-ground biomass in Amazonian forests at Sao Gabriel da Cachoeira in the upper Rio Negro, Brazil. Forest Ecology and Management, 277, 163–172.

http://doi.org/10.1016/j.foreco.2012.04.028

Manuri, S., Brack, C., Nugroho, N. P., Hergoualc’h, K., Novita, N., Dotzauer, H., … Widyasari, E. (2014). Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. Forest Ecology and Management, 334, 241–253.

http://doi.org/10.1016/j.foreco.2014.08.031

Maulana, S. I. (2014). Allometric equations for estimating above-ground biomass in Papua Tropical Forest. Indonesian Journal of Forestry Research, 1(2), 77–88.

http://doi.org/10.20886/ijfr.2014.1.2.77-88

Maulana, S. I., & Pandu, P. . J. (2011). Pendugaan total biomassa atas tanah pada Genera Pometia di Kawasan Hutan Tropis Papua. Jurnal Analisis Kebijakan Kehutanan Penelitian Sosial Dan Ekonomi Kehutanan, 8(4), 288–298.

Maulana, S. I., Wibisono, Y., & Utomo, S. (2016). Development of local allometric equation to estimate total aboveground biomass in Papua. Indonesian Journal of Forestry Research, 3(2), 107–118.

http://doi.org/DOI: http://dx.doi.org/10.20886/ijfr.2016.3.2.107-118

Menéndez-Miguélez, M., Canga, E., Álvarez-Álvarez, P., & Majada, J. (2014). Stem taper function for sweet chestnut (Castanea sativa Mill.) coppice stands in northwest Spain. Annals of Forest Science, 71(7), 761–770.

http://doi.org/10.1007/s13595-014-0372-6

Mugasha, W. A., Eid, T., Bollandsas, O. M., Malimbwi, R. E., Chamshama, S. A. O., Zahabu, E., & Katani, J. Z. (2013). Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. Forest Ecology and Management, 310, 87–101.

http://doi.org/10.1016/j.foreco.2013.08.003

Naiem, M., Widyatno, & Al-Fauzi, M. Z. (2014). Progeny test of Shorea leprosula as key point to increase productivity of secondary forest in PT Balik Papan Forest Industries, East Kalimantan, Indonesia. Procedia Environmental Sciences, 20, 816–822.

http://doi.org/10.1016/j.proenv.2014.03.099

Naito, Y., Kanzaki, M., Iwata, H., Obayashi, K., Lee, S. L., Muhammad, N., … Tsumura, Y. (2008). Density-dependent selfing and its effects on seed performance in a tropical canopy tree species, Shorea acuminata (Dipterocarpaceae). Forest Ecology and Management, 256(3), 375–383. http://doi.org/10.1016/j.foreco.2008.04.031

Ngomanda, A., Engone Obiang, N. L., Lebamba, J., Moundounga Mavouroulou, Q., Gomat, H., Mankou, G. S., … Picard, N. (2014). Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest? Forest Ecology and Management, 312, 1–9.

http://doi.org/10.1016/j.foreco.2013.10.029

Nugroho, N. P. (2014). Developing Site-Specific Allometric Equations for above-ground biomass estimation in peat swamp forests of Rokan Hilir District , Riau Province , Indonesia. Indonesian Journal of Forestry Research, 1(1), 47–66.

http://doi.org/10.20886/ijfr.2014.1.1.47-65

Puspitasari, D. (2015). Angka Bentuk dan Model Volume Kayu Afrika (Maesopsis eminii Engl) di Hutan Pendidikan Gunung Walat, Sukabumi, Jawa Barat. Bogor: Institut Pertanian Bogor.

Qirom, M. A., & Lazuardi, D. (2007). Model persamaan linear untuk penduga volume pohon hutan tanaman jenis Mangium di Kalimantan Selatan. Jurnal Penelitian Hutan Tanaman, 4(3), 119–138.

Qirom, M. A., & Supriyadi. (2012a). Evaluasi dan Penyusunan Model Prediksi Pertumbuhan dan Hasil Jenis Jelutung Rawa dan Nyawai. Banjarbaru.

Qirom, M. A., & Supriyadi. (2012b). Penyusunan model Penduga volume pohon jenis jelutung rawa (Dyera polyphylla (Miq)V. Steenis). Jurnal Penelitian Hutan Tanaman, 9(3), 141–153.

Qirom, M. A., & Supriyadi. (2013). Model penduga volume pohon nyawai (Ficus variegata Blume) di Kalimantan Timur. Jurnal Penelitian Hutan Tanaman, 10(4), 173–184.

Sahuri. (2017). Model pendugaan volume pohon karet saat peremajaan di Sembawa, Sumatera Selatan. Jurnal Penelitian Hutan Tanaman, 14(2), 129–143.

Sharma, M., Oderwald, R. G., & Amateis, R. L. (2002). A consistent system of equations for tree and stand volume. Forest Ecology and Management, 165(1–3), 183–191.

http://doi.org/10.1016/S0378-1127(01)00616-8

Siarudin, M., & Indrajaya, Y. (2014). Persamaan allometrik jabon (Neolamarckia cadamba Miq) untuk pendugaan biomassa di atas tanah pada Hutan Rakyat Kecamatan Pakenjeng Kabupaten Garut. Jurnal Penelitian Hutan Tanaman, 11(1), 1–9.

Siregar, C. A., & Dharmawan, I. W. S. (2011). Stok karbon tegakan hutan alam dipterokarpa di pt. sarpatim, kalimantan tengah. Journal Penelitian Hutan Dan Konservasi Alam, 8(4), 337–348.

Subedi, M. R., & Sharma, R. P. (2012). Allometric biomass models for bark of Cinnamomum tamala in mid-hill of Nepal. Biomass and Bioenergy, 47, 44–49. http://doi.org/10.1016/j.biombioe.2012.10.006

Suchomel, C., Pyttel, P., Becker, G., & Bauhus, J. (2012). Biomass equations for sessile oak (Quercus petraea (Matt.) Liebl.) and hornbeam (Carpinus betulus L.) in aged coppiced forests in southwest Germany. Biomass and Bioenergy, 46(0), 722–730. http://doi.org/10.1016/j.biombioe.2012.06.021

Sumadi, A., Nugroho, A. W., & Rahman, T. (2010). Model penduga volume pohon pulai gading di Kabupaten Musi Rawas – Sumatera Selatan. Jurnal Penelitian Hutan Tanaman, 7(2), 107–112.

Sumadi, A., & Siahaan, H. (2010). Model penduga volume pohon kayu bawang (Disoxylum molliscimum Burm F) di Provinsi Bengkulu. Jurnal Penelitian Hutan Tanaman, 7(5), 227–231.

Susila, I. W. W. (2012). Model dugaan volume dan riap tegakan jati (Tectona grandis L.F) di Nusa Penida, Klungkung Bali. Jurnal Penelitian Hutan Tanaman, 9(3), 165–178.

Sutaryo, D. (2009). Penghitungan Biomassa: Sebuah pengantar untuk studi karbon dan perdagangan karbon. Bogor: Wetland International Indonesia Programme.

Tewari, V. P., & Singh, B. (2006). Total and merchantable wood volume equations for Eucalyptus hybrid trees in Gujarat State, India. Arid Land Research and Management, 20(2), 147–159.

http://doi.org/Doi 10.1080/15324980500546015

Tewari, V. P., & Singh, B. (2008). Potential density and basal area prediction equations for unthinned Eucalyptus hybrid plantations in the Gujarat state of India. Bioresource Technology, 99(6), 1642–1649. http://doi.org/10.1016/j.biortech.2007.04.004

Turjaman, M., Santoso, E., Susanto, A., Gaman, S., Limin, S. H., Tamai, Y., … Tawaraya, K. (2011). Ectomycorrhizal fungi promote growth of Shorea balangeran in degraded peat swamp forests. Wetlands Ecology and Management, 19(4), 331–339. http://doi.org/10.1007/s11273-011-9219-1

Turski, M., Beker, C., Kazmierczak, K., & Najgrakowski, T. (2008). Allometric equations for estimating the mass and volume of fresh assimilational apparatus of standing scots pine (Pinus sylvestris L.) trees. Forest Ecology and Management, 255(7), 2678–2687. http://doi.org/10.1016/j.foreco.2008.01.028

Ubuy, M. H., Eid, T., Bollandsås, O. M., & Birhane, E. (2018). Above ground biomass models for trees and shrubs of exclosures in the drylands of Tigray, northern Ethiopia. Journal of Arid Environments, 156(February), 9–18.

http://doi.org/10.1016/j.jaridenv.2018.05.007

Widyasari, N. A. E. K., Saharjo, B. H., Solichin, & Istomo. (2010). Pendugaan biomassa dan potensi karbon terikat di atas permukaan tanah pada hutan rawa gambut di su. Ilmu Pertanian Indonesia, 15(1), 41–49.

Yuniati, D., & Kurniawan, H. (2013). Pendugaan simpanan karbon dalam mendukung upaya konservasi savana Corypha utan (Biomass and carbon allometric equation for estimating carbon stock to support Corypha utan savanna conservation). Jurnal Penelitian Sosial dan Ekonomi Kehutanan, 10(2), 75–84.

Zewdie, M., Olsson, M., & Verwijst, T. (2009). Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia. Biomass and Bioenergy, 33(3), 421–428. http://doi.org/10.1016/j.biombioe.2008.08.007




DOI: https://doi.org/10.20886/jwas.v5i2.4585