The Volume Model of Tree Species Group in Peat Swamp Forest at Logging Concession Area of Tingang Karya Mandiri, Central Kalimantan

Muhammad Abdul Qirom, Acep Akbar

Abstract


Tropical peat swamp forest (PSF) has a high species diversity and value including timber value. The valuation of timber is approached by calculating the stand volume. However, the volume model at PSF is not available for every species and species groups in specific site. This study aims to obtain a volume estimation model of species groups of tree species in peat swamp forest in Central Kalimantan. The model development and validation used 120 sample trees of the dipterocarpaceae and non-dipterocarpacae species. The distribution of sample trees is 70 % for the development model and 30 % for the validation stage. Modeling used linear and non-linear models). The selection of the best model used several criteria including: coefficient of determination, relative deviation (SR <8 %) and aggregation (SA <1 %), presumptive bias (s and RSE: Root Square Errors), AIC (Akaike's Information criteriation), and NRMSE (Normalized Root Mean Square Errors). The results of this study indicated the Berkhout/diameter model as a single variable was very good in estimating the volume of trees at all levels namely species groups and all species except dipterocarpaceae groups. This model had a high coefficient of determination (R2 >95 %). The models compiled met the SA and SR criteria so that the models were very accurate in estimating tree volume at the tree level, as individuals and stands. The implication of this research was that the whole species model can be used to estimate the volume of trees in peat swamp forest.
Keywords: accuracy, timber , non-linear, validation


References


Abbot, P., Lowore, J., & Werren, M. (1997). Models for the estimation of single tree volume in four Miombo woodland types. Forest Ecology and Management, 97(1), 25–37. http://doi.org/10.1016/S0378-1127(97)00036-4

Adekunle, V. A. J., Nair, K. N., Srivastava, A. K., & Singh, N. K. (2013). Models and form factors for stand volume estimation in natural forest ecosystems: A case study of Katarniaghat Wildlife Sanctuary (KGWS), Bahraich District, India. Journal of Forestry Research, 24(2), 217–226. http://doi.org/10.1007/s11676-013-0347-8

Aigbe, H. I., Modugu, W. W., & Oyebade, B. A. (2012). Modeling Volume From Stump Diameter of Terminalia Ivorensis (A. Chev) in Sokponba Forest Reserve, Edo State, Nigeria. ARPN Journal of Agricultural and Biological Science, 7(3), 146–151.

Armecin, R. B., & Coseco, W. C. (2012). Abaca (Musa textilis Nee) allometry for above-ground biomass and fiber production. Biomass and Bioenergy, 46(0), 181–189. http://doi.org/10.1016/j.biombioe.2012.09.004

Astiani, D. (2016). Tropical peatland tree-species diversity altered by forest degradation. Biodiversitas, 17(1), 102–109. http://doi.org/10.13057/biodiv/d170115

Badan Restorasi Gambut (BRG). (2016). Rencana Strategis Badan Restorasi Gambut 2016-2020. Jakarta.

Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684–1694. http://doi.org/10.1016/j.foreco.2009.01.027

Boreel, A., & Siahaya, T. E. (2010). Model pendugaan isi pohon jenis torem (Manilkara kanosiensis, H.J. Lam & B.J.D. Meeuse) di Pulau Yamdena Kabupaten Maluku Tenggara Barat. Jurnal Agroforestri, V(4), 279–286.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference. A Practical Information-Theoretic Approach (II). New York: Springer-Verlag New York. http://doi.org/10.1017/CBO9780511802461.005

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., … Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. http://doi.org/10.1007/s00442-005-0100-x

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190.

http://doi.org/10.1111/gcb.12629

Dutcă, I., Mather, R., Blujdea, V. N. B., Ioraș, F., Olari, M., & Abrudan, I. V. (2018). Site-effects on biomass allometric models for early growth plantations of Norway spruce (Picea abies (L.) Karst.). Biomass and Bioenergy, 19 (2018), 2384-2392. http://doi.org/10.1016/j.biombioe.2018.05.013

Guedes, B. S., Sitoe, A. A., & Olsson, B. A. (2018). Allometric models for managing lowland miombo woodlands of the Beira corridor in Mozambique. Global Ecology and Conservation, 13 (2018), 1-15. http://doi.org/10.1016/j.gecco.2018.e00374

Hosoda, K., & Iehara, T. (2010). Aboveground biomass equations for individual trees of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi in Japan. Journal of Forest Research, 15(5), 299–306. http://doi.org/10.1007/s10310-010-0192-y

Husch, B., Beers, T. W., & Kershaw, J. (2002). Forest Mensuration (Fourth). New Jersey: Jhon Wiley and Sons, Inc. Hoboken.

Hutapea, F., & Kuswandi, R. (2019). Model Penduga Volume Pohon Kelompok Jenis Komersial pada Areal IUPHHK PT. Tunas Timber Lestari di Kabupatem Boven Digul, Papua. Jurnal Wasian, 6(1), 27–36. http://doi.org/10.20886/jwas.v6i1.4714

Kalima, T., & Denny. (2019). Komposisi Jenis dan Struktur Hutan Rawa Gambut Taman Nasional Sebangau, Kalimantan Tengah. Jurnal Penelitian Hutan Dan Konservasi Alam, 16(1), 51–72.

Kalita, R. M., Das, A. K., & Nath, A. J. (2015). Allometric equations for estimating above- and belowground biomass in Tea (Camellia sinensis (L.) O. Kuntze) agroforestry system of Barak Valley, Assam, northeast India. Biomass and Bioenergy, 83, 42–49. http://doi.org/10.1016/j.biombioe.2015.08.017

Krisnawati, H. (2016). A Compatible estimation model of stem volume and taper for Acacia mangium Willd . plantations. Indonesia Journal of Forestry Research, 3(1), 49–64.

Kuswandi, R. (2016). Model Penduga Volume Pohon Kelompok Jenis Komersial Pada Wilayah Kabupaten Sarmi , Papua Timber Volume Estimation Model for Merchantable Tree Species in Sarmi Regency, Papua. Jurnal Wasian, 3(2), 91–96.

Magnussen, S., Kleinn, C., & Fehrmann, L. (2020). Wood volume errors from measured and predicted heights. European Journal of Forest Research, 139 (2020), 169–178. http://doi.org/10.1007/s10342-020-01257-9

Manuri, S., Brack, C., Noor’an, F., Rusolono, T., Anggraini, S. M., Dotzauer, H., & Kumara, I. (2016). Improved allometric equations for tree aboveground biomass estimation in tropical dipterocarp forests of Kalimantan, Indonesia. Forest Ecosystems, 3(28). http://doi.org/10.1186/s40663-016-0087-2

Manuri, S., Brack, C., Nugroho, N. P., Hergoualc’h, K., Novita, N., Dotzauer, H., … Widyasari, E. (2014). Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. Forest Ecology and Management, 334, 241–253. http://doi.org/10.1016/j.foreco.2014.08.031

Manyanda, B. J., Mugasha, W. A., Nzunda, E. F., & Malimbwi, R. E. (2020). Biomass and volume models based on stump diameter for assessing degradation of miombo woodlands in Tanzania. International Journal of Forestry Research, 2020. http://doi.org/10.1155/2019/1876329

Masota, A. M., Zahabu, E., Malimbwi, R. E., Bollandsas, O. M., & Eid, T. H. (2014). Volume Models for Single Trees in Tropical Rainforests in Tanzania. Journal of Energy and Natural Resources, 3(5), 66–76. http://doi.org/10.11648/j.jenr.20140305.12

Mirmanto, E. (2010). Vegetation analyses of Sebangau peat swamp forest, Central Kalimantan. Biodiversitas, 11(2), 82–88. http://doi.org/10.13057/biodiv/d110206

Mugasha, W. A., Eid, T., Bollandsas, O. M., Malimbwi, R. E., Chamshama, S. A. O., Zahabu, E., & Katani, J. Z. (2013). Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. Forest Ecology and Management, 310, 87–101. http://doi.org/10.1016/j.foreco.2013.08.003

Mugasha, W. A., Mwakalukwa, E. E., Luoga, E., Malimbwi, R. E., Zahabu, E., Silayo, D. S., … Kashindye, A. (2016). Allometric Models for Estimating Tree Volume and Aboveground Biomass in Lowland Forests of Tanzania. International Journal of Forestry Research, 2016. http://doi.org/10.1155/2016/8076271

Osaki, M., Nursyamsi, D., Noor, M., Wahyunto, and Segah, H. (2016). Peatland in Indonesia. In Mitsuru Osaki and Nobuyuki Tsuji (Ed.), Tropical Peatland Ecosystems (pp. 49–58). Tokyo: Springer Japan. http://doi.org/10.1007/978-4-431-55681-7_3

Page, S. E., Rieley, J. O., Shotyk, W., & Weiss, D. (1999). Interdependence of peat and vegetation in a tropical peat swamp forest. Biological Sciences, 354(1391), 1885–1897. http://doi.org/10.1098/rstb.1999.0529

Picard, N., Saint-André, L., & Henry, M. (2012). Manual for building tree volume and biomass allometric equations: From field measurement to prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement. Roma: Food and Agricultural Organization of the United Nations, Rome, and and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier.

Qirom, M. A. (2018). Penyusunan dan Validasi Model Penduga Volume Jenis Pohon Balangeran (Shorea balangeran ( Korth .) Burck ) di Kalimantan Tengah. Jurnal Wasian, 5(2), 89–103.

Qirom, M. A., & Supriyadi. (2012). Penyusunan Model Penduga Volume Pohon Jenis Jelutung Rawa (Dyera polyphylla (Miq)V. Steenis). Jurnal Penelitian Hutan Tanaman, 9(3), 141–153.

Qirom, M. A., & Supriyadi. (2013). Model Penduga Volume Pohon Nyawai (Ficus variegata Blume) di Kalimantan Timur. Jurnal Penelitian Hutan Tanaman, 10(4), 173–184.

Rieley, J., & Page, S. (2016). Tropical Peatland of the World. (M. Osaki & N. Tsuji, Eds.), Tropical Peatland Ecosystems (pp. 3 - 32). Tokyo: Springer Japan. http://doi.org/10.1007/978-4-431-55681-7_1

Sahuri. (2017). Model Pendugaan Volume Pohon Karet Saat Peremajaan di Sembawa, Sumatera Selatan. Jurnal Penelitian Hutan Tanaman, 14(2), 129–143.

Subedi, M. R., & Sharma, R. P. (2012). Allometric biomass models for bark of Cinnamomum tamala in mid-hill of Nepal. Biomass and Bioenergy, 47, 44–49. http://doi.org/10.1016/j.biombioe.2012.10.006

Suchomel, C., Pyttel, P., Becker, G., & Bauhus, J. (2012). Biomass equations for sessile oak (Quercus petraea (Matt.) Liebl.) and hornbeam (Carpinus betulus L.) in aged coppiced forests in southwest Germany. Biomass and Bioenergy, 46(2012), 722–730. http://doi.org/10.1016/j.biombioe.2012.06.021

Susanty, F. H., & Abdurachman. (2016). Analisis penyusunan model pendugaan volume pohon 3 jenis Shorea di Tarakan, Kalimantan Utara. Jurnal Penelitian Dipterokarpa, 2(1), 29–44.

Taebi, A., & Mansy, H. A. (2017). Time-frequency distribution of seismocardiographic signals: A comparative study. Bioengineering, 4(32). http://doi.org/10.3390/bioengineering4020032

Tang, J., Riley, W. J., & Niu, J. (2015). Incorporating root hydraulic redistribution in CLM4.5: Effects on predicted site and global evapotranspiration, soil moisture, and water storage. Journal of Advances in Modeling Earth Systems, 7(4), 1828–1848. http://doi.org/10.1002/2015MS000484

Tewari, V. P., & Singh, B. (2006). Total and merchantable wood volume equations for Eucalyptus hybrid trees in Gujarat State, India. Arid Land Research and Management, 20(2), 147–159. http://doi.org/Doi 10.1080/15324980500546015

Ubuy, M. H., Eid, T., Bollandsås, O. M., & Birhane, E. (2018). Aboveground biomass models for trees and shrubs of exclosures in the drylands of Tigray, northern Ethiopia. Journal of Arid Environments, 156(February), 9–18. http://doi.org/10.1016/j.jaridenv.2018.05.007




DOI: https://doi.org/10.20886/jwas.v7i1.5538