EFEK LAJU KARBONDIOKSIDA (CO₂) TERHADAP MORFOLOGI DAN LAJU PERTUMBUHAN POPULASI Spirulina platensis (Gomont) [The Effect Of Carbon Dioxide (Co₂) Rate To The Morphology And The Growth Rate Of Spirulina Platensis (Gomont) Population]

lutfi Anggadhania, Andhika Puspito Nugroho



Carbon dioxide pollution occurs due to increase the use of fossil fuels for industry and transportation. Due to deforestry, the absorption of carbon dioxide by terrestrial environment is reduced. This will lead the increased of carbon dioxide absorption by the sea. The absorption of carbon dioxide by the ocean will lead the changes in ocean chemistry and affects the marine ecosystems. Spirulina platensis, as a cosmopolitan organism that can use inorganic carbon that absorbed by the ocean become one of microorganism that has effect by these changes. This research aims are to study the effect of carbon dioxide rate to the morphology and the growth rate of Spirulina platensis population. This research method is completely randomized design with three treatments and three replications. The period of treatment started in the exponential phase with carbon dioxide rate at 0.1 lpm, 0.2 lpm, and 0.4 lpm. The results showed that carbon dioxide is given can be used by S. platensis to stimulating the growth but this will also shorten the growth kinetics. This is also reflected in the results of the statistical analysis that there is no significant defference (p>0,05). And the morphological responses of S. platensis are fragmentation and lysis cell.



Pencemaran karbondioksida terjadi karena peningkatan penggunaan bahan bakar fosil untuk industri dan transportasi. Akibat terjadinya deforestri penyerapan karbondioksida oleh lingkungan terrestrial berkurang, sehingga terjadi peningkatan penyerapan karbondioksida oleh laut. Penyerapan karbondioksida oleh laut akan menyebabkan perubahan sifat kimia laut yang berdampak pada ekosistem laut. Spirulina platensis sebagai organisme kosmopolitan yang terdapat di laut dapat menggunakan karbon anorganik yang terserap dalam laut. Penelitian ini bertujuan untuk mempelajari efek laju karbondioksida terhadap morfologi dan laju pertumbuhan populasi Spirulina platensis. Metode penelitian ini adalah rancangan acak lengkap dengan tiga perlakuan dan tiga ulangan. Masa perlakuan dimulai pada fase eksponensial dengan laju karbondioksida 0,1 lpm, 0,2 lpm, dan 0,4 lpm. Hasil penelitian menunjukkan bahwa karbondioksida yang diberikan mampu digunakan oleh S. platensis untuk meningkatkan pertumbuhan tetapi juga akan memperpendek kinetika pertumbuhan. Hal ini juga tercermin pada hasil analisis statistiknya yang tidak ada beda nyata (p>0,005). Secara morfologi respon S. platensis terhadap pemberian karbondioksida adalah terjadinya fragmentasi dan lisis sel.


carbon dioxide, Spirulina, growth rate, morphology

Full Text:



Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. Van der Linden, X. Dai, L. Maskell, and C.A. Johnson. (2001). Climate Change 2001 : the scientifics basis. Cambridge University Press, Cambridges. p: 881.

NOAA. (2016). Trends in Atmospheric Carbon Dioxide. Earth System Research Laboratory, National Oceanic and Atmospheric Administration. USA. http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html.

Sharma, S.S. (2011). Determinants of carbon dioxide emissions: Empirical evidence from 69 countries. Applied Energy 88. pp: 376-382.

Moreira, D. and Pires, J.C.M.(2016). Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresource Technology 215. pp 371-379.

Shen, T.T. (1995). Industrial pollution prevention. Springer-Verlag Berlin. Heidelberg. Germany. pp: 1-3.

Anonim. (2005). The ocean and the carbon cycle. (http://science.hg.nasa.gov/index.html.

Muranaka, T and M. Murakami. (2001). CO2 fixation by high temperature high CO2 tolerant Chlorella sp. In : Photosynthetic microorganism in environmental biothechnology. Editor K. Hiroyuki, and L.Y. Kun. 200. Spinger verlag. Hongkong. p: 291-307.

Campanella, L., G.Cresentini, P. Avino, and A. Moauro. (1998). Dertemination of microminerals and trace elements in the alga Spirulina platensis. Analusis, 26. pp: 210-214.

Rafiqul, I.M., K.C.A. Jalal and M.Z. Alam. (2005). Enviromental factors for optimization of Spirulina biomass in laboratory culture. Biotechnology 4(1) : 19-20.

Castenholz, R.W, R.Rippka, M. Herdman, and A. Wilmotte. (2001). Bergey’s Manual of Systematic Bacteriology : The Archaea and The Deeply Brancing and Phototropic bacteria. (Ed G.M. Garrity). Springer-Verlag. New York. pp: 542-543.

Nakano, Y., T. Matsumoto, H. Inui, K. Haranoh, K. Miyatake, T. Enomoto, M. Hayashi, T. Nakatsuka, and F. Watanabe. (2001). Growth of Photosynthetic algae, euglena gracilis, under High CO2 and its photosynthetic Characteristics. In Photosynthetic microorganism in environment biotechnology. H. kojima and Y.K. Lee (Eds). Springer-verlag, ltd. USA. pp: 97-109.

DOI: https://doi.org/10.20886/jpkf.2017.1.2.75-84


  • There are currently no refbacks.

Copyright©2018 | Jurnal Penelitian Kehutanan Faloak (JPKF)

eISSN : 2579-5805, pISSN : 2620-617X
JPKF is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Jurnal Penelitian Kehutanan FALOAK indexed By: