ANALISIS NERACA AIR PERTANIAN DI SUB DAS RAWATAMTU (Analysis of agricultural water balance in Rawatamtu sub-watershed)

Erwan Bagus Setiawan, Indarto Indarto, Sri Wahyuningsih


Population growth, urbanization, industrial development, and agricultural activities increase water demand on the watershed. An increase in water demand will propagate the excessive exploitation of surface water and groundwater resources. This will probably influence the water balance of the watershed. Therefore, understanding the water balance is a necessity. Continuous imbalance between water supply and demand will generate many serious environmental problems. A study of agricultural water balance is needed to answer the question whether the available water resources can meet the needs of sufficient water for irrigation. The study was conducted in Rawatamtu sub-watershed which was part of Bedadung Watershed. The Water Evaluation and Planning (WEAP) model was used to analyze agricultural water balance. The procedure included inventory data, installing WEAP on the system, running the WEAP, and using WEAP for simulating future water balance conditions. The simulation results showed that agricultural water balance for the next 10 years will be more frequently in surplus condition rather than in deficit condition. The water surplus was estimated to occur in the year of 2020, 2021, 2023, 2025, 2027 and 2028. The highest surplus occurred in the year of 2028 which reached 56.59 million m3. Furthermore, the potential water balance deficit was projected to occur in 2019, 2022, 2024 and 2026.


agricultural water balance; WEAP; agricultural water needs; Rawatamtu


Andreu, J., Capilla, J., & Sanchis, E. (1996). AQUATOOL , a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177, 269–291.

Angarita, H., Wickel, A. J., Sieber, J., Chavarro, J., Maldonado-Ocampo, J. A., Herrera-R, G. A., … Purkey, D. (2018). Basin-scale impacts of hydropower development on the Mompós Depression wetlands , Colombia. Hydrology and Earth System Sciences, 22, 2839–2865.

Ayele, A. S. (2016). Application of Water Evaluation and Allocation Planning (WEAP) Model to Assess Future Water Demands and Water Balance of The Caledon River Basin. (Central University of Technology).

Berhe, F. T., Melesse, A. M., Hailu, D., & Sileshi, Y. (2013). Catena MODSIM-based water allocation modeling of Awash River Basin , Ethiopia. Catena, 109, 118–128.

Cetinkaya, C. P., & Gunacti, M. C. (2018). Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin. Water Resour Manage. Multi-Criteria

Dewi, C. R., Priyantoro, D., & Harisuseno, D. (2014). Tinjauan Faktor K Sebagai Pendukung Rencana Sistem Pembagian Air Irigasi Berbasis FPR Studi di Jaringan Irigasi Pirang Kabupaten Bojonegoro. Jurnal Teknik Pengairan.

Haliem, W., Juwono, P. T., & Priyantoro, D. (2012). Studi Pola Penatagunaan Potensi Air Sumber Pitu di Wilayah Kali Lajing Sebagai Dasar Pengembangan Sumber Daya Air Wilayah Sungai Amprong. Jurnal Pengairan, 3(No 2), 230–239.

Hassan, D., Bano, R., Burian, S. J., & Ansari, K. (2017). Modeling Water Demand and Supply for Future Water Resources Management. International Journal of Scientific & Engineering Research, 8(5), 1745–1750.

Hussen, B., Mekonnen, A., & Pingale, S. M. (2018). Integrated water resources management under climate change scenarios in the sub-basin of Abaya-Chamo , Ethiopia. Modeling Earth Systems and Environment.

Ibrahim, A., Fayyad, A., Najm, M. A., & El-Fadel, M. (2018). Sustainability of Basin Level Development Under A Changing Climate. International Journal Sustainable Development Planning, 13(3), 394–405.

Jatmiko, B. C. (2018). Analisis Kebutuhan Air Tanaman dan Indeks Pertanaman pada SubDAS Antokan Kabupaten Bondowoso. Universitas Jember.

Khalil, A., Rittima, A., & Phankamolsil, Y. (2018). The projected changes in water status of the Mae Klong Basin , Thailand , using WEAP model. Paddy and Water Environment.

Labadie, J. W. (2006). MODSIM : Decision Support System for Integrated River Basin Management MODSIM : Decision Support System for Integrated River. 3rd International Congress on Environmental Modelling and Software.

Momblanch, A., Paredes, J., & Andreu, J. (2013). Integrated Water Resources Management and related indicators. 4th SCARCE International Conference, 23–25.

Mousavi, S. J., Anzab, N. R., Asl-Rousta, B., & Kim, J. H. (2017). Multi-Objective Optimization-Simulation for Reliability-Based Inter-Basin Water Allocation. Water Resour Manage.

Nurlaila Indriani, S., Agus Setiawan, A., & Budiarto, R. (2018). Demand Simulation for Water, Food Irrigation, and Energy from Micro Hydro Power Plant in Sungai Bayang, Bayang Utara, Pesisir Selatan West Sumatra. E3S Web of Conferences, 43, 01015.

Olsson, T., Kämäräinen, M., Santos, D., Seitola, T., Tuomenvirta, H., Haavisto, R., & Lavado-casimiro, W. (2017). Journal of Hydrology : Regional Studies Downscaling climate projections for the Peruvian coastal Chancay- Huaral Basin to support river discharge modeling with WEAP. Journal of Hydrology: Regional Studies, 13, 26–42.

Omar, M. M. (2019). Evaluation of actions for better water supply and demand management in Fayoum , Egypt using RIBASIM Evaluation of actions for better water supply and demand management in Fayoum , Egypt using RIBASIM. Water Science, 27(54), 78–90.

Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., & Andreu, J. (2014). Integrating water management , habitat modelling and water quality at the basin scale and environmental flow assessment : case study of the Tormes River , Spain Integrating water management , habitat modelling and water quality at the basin scale and envi. Hydrological Sciences Journal, 3–4(October 2014), 878–889.

Pedro-monzonís, M., Jiménez-fernández, P., Solera, A., & Jiménez-gavilán, P. (2016). The use of AQUATOOL DSS applied to the System of Environmental- Economic Accounting for Water ( SEEAW ). 533, 1–14.

Pedro-monzonís, M., Solera, A., Ferrer, J., Andreu, J., & Estrela, T. (2016). Science of the Total Environment Water accounting for stressed river basins based on water resources management models. Science of the Total Environment, 565, 181–190.

Reinhardt, J., Liersch, S., Abdeladhim, M. A., Diallo, M., Dickens, C., Fournet, S., … Walz, A. (2018). Systematic evaluation of scenario assessments supporting sustainable integrated natural resources management : evidence from four case studies in Africa. Ecology and Society, 23(1). ES-09728-230105

Sari, D. (2016). Penerapan Manajemen Aset Pada Daerah Irigasi Pondok Waluh Kabupaten Jember. Universitas Jember.


Sechi, G. M., & Sulis, A. (2009). Water System Management through a Mixed Optimization-Simulation Approach. 135(3), 160–170.

Sechi, G. M., & Zucca, R. (2010). Drought mitigation using operative indicators in complex water systems. Physics and Chemistry of the Earth, 35(3–5), 195–203.

Sechi, G. M., & Zucca, R. (2017). A Cost-Simulation Approach to Finding Economic Optimality in Leakage Reduction for Complex Supply Systems. Water Resour Manage.

Sholihah, R., Dasanto, B. D., & Hendarti. (2017). PERENCANAAN ALOKASI AIR PADA SEBAGIAN DAS CISADANE DI WILAYAH KABUPATEN DAN KOTA BOGOR. Jurnal Teknik Hidraulik, 7(2), 195–210.

Shourian, M., Mousavi, S. J., & Tahershamsi, A. (2008). Basin-wide Water Resources Planning by Integrating PSO Algorithm and MODSIM. Water Resour Manage, 22, 1347–1366.

Sieber, J., Swartz, C., & Huber-Lee, A. (2005). WEAP (Water Evaluation And Planning System) USER GUIDE. Boston MA: Stockholm Environment Institute, Tellus Institute.

Soewarno. (2015). Klimatologi Seri Hidrologi. Yogyakarta: Graha Ilmu.

Stockholm Environment Institute (SEI). (2016). WEAP Water Evaluation And Planning System Tutorial. Stockholm: Stockholm Environment Institute.

Sulis, A. (2009). Environmental Modelling & Software Short communication GRID computing approach for multireservoir operating rules with uncertainty. Environmental Modelling and Software, 24(7), 859–864.

Sulis, A., & Sechi, G. M. (2013). Comparison of generic simulation models for water resource systems. Environmental Modelling and Software, 40, 214–225.

Tena, T. M., Mwaanga, P., & Nguvulu, A. (2019). Hydrological modelling and water resources assessment of Chongwe River Catchment using WEAP model. Water (Switzerland), 11(4).

Yates, D., Sieber, J., Purkey, D., & Huber-Lee, A. (2005). WEAP21—A demand-, priority-, and preference-driven water planning model Part 1: Model characteristics. Water Int., 487–500.


Zohrabi, N., Nassaj, B. N., & Shahbazi, A. (2017). Effects of Surface Irrigation Efficiency Improvement On Water Resources System Indices. 23rd International Congress on Irrigation and Drainage, 1–16.



  • There are currently no refbacks.

Copyright (c) 2020 Jurnal Penelitian Pengelolaan Daerah Aliran Sungai (Journal of Watershed Management Research)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




Published by:

Cooperation Watershed Management Technology Center (WMTC) with Soil & Water Conservation Society of Indonesia (Masyarakat Konservasi Tanah dan Air Indonesia) or MKTI.

eISSN : 2579-5511,  pISSN : 2579-6097


Watershed Management Technology Center (WMTC)
Jl. Jend A. Yani-Pabelan, Kartasura Po.BOX 295 Surakarta 57102
Phone.(0271) 716709 ; Fax(0271) 716959;
Email :

Website :

Copyright : Jurnal Penelitian Pengelolaan Daerah Aliran Sungai (Journal of Watershed Management Research)