PREDIKSI DEBIT SUNGAI BENGAWAN SOLO MENGGUNAKAN NUMERICAL WEATHER MODEL GLOBAL FORECAST SYSTEM DAN INTEGRATED FLOOD ANALYSIS SYSTEM (Prediction of discharge in Bengawan Solo River using Numerical Weather Model Global Forecast System and Integrated Flood Analysis System)

Deffi Munadiyat Putri, Aries Kristianto


Flood is one of the most common hydro-meteorological disasters. Bengawan Solo is one of the watersheds in Indonesia that also hit by this disaster. This study discusses the flood disaster in the Bengawan Solo area in early March 2019. The purpose of this study is to conduct a discharge simulation using numerical weather model Global Forecast System (GFS) data through Integrated Flood Analysis System (IFAS) so it is possible to predict discharge in the future. There are three types of numerical weather model GFS data that have been downscale using weather research and forecasting model which differentiated based on spin-up time. The numerical weather model product is then used as rainfall data input for IFAS simulation. Based on the analysis, the flood discharge simulation using an 84-hour spin-up time has a satisfactory performance in describing the change in discharge with respect to time. This happens because numerical weather models will be better at quantifying processes that occur on a meso scale with spatial scale of 10 to 1000 km. The result of this research shows that it is possible to predict river discharge up to 84 hours before the disaster so this is can support the mitigation process for hydrometeorological disasters.


Global Forecast System; Flood Analysis System; spin-up


Agustianto, D. A. (2014). Model hubungan hujan dan runoff (studi lapangan). Jurnal Teknik Sipil Dan Lingkungan, 2(2), 215–224.

Astuti, H.P., & Lasminto, U. (2014). Pemodelan hujan debit pada daerah aliran sungai Bengawan Solo dengan distributed model menggunakan Integrated flood analysis system (IFAS). Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW) (pp.31-36). Surabaya: ITS.

Aziz, A., & Tanaka, S. (2010). Regional parameterization and applicability of integrated flood analysis system

( IFAS ) for flood forecasting of Upper-Middle Indus River classification of hydrological models. Pakistan Journal of Meterorology, 8(15), 21–38.

Chinh, D. D., Thi, N., Thuan, T., Van, P. T., Thanh, T. N., & Van, V. (2014). Research the applicability of IFAS model in flood analysis (Pilot at Bang Giang river basin in Cao Bang Province). Proceedings of the 28th EnviroInfo 2014 Conference.

Chow, M. F., & Jamil, M. M. (2017). Review of development and applications of Integrated Flood Analysis System (IFAS) for flood forecasting in insufficiently-gauged catchments. Journal of Engineering and Applied Sciences, 12 (Specialissue11), 9210–9215.

Gustari, I., Hadi, T. W., Hadi, S., & Renggono, F. (2012). Akurasi prediksi curah hujan harian operasional di Jabodetabek : Perbandingan dengan model WRF. Jurnal Meteorologi dan Geofisika, 13(2), 119–130.

Han, S., & Coulibaly, P. (2017). Bayesian flood forecasting methods: A review. Journal of Hydrology, 551(June), 340–351.

Jain, S. K., Mani, P., Jain, S. K., Prakash, P., Singh, V. P., Tullos, D., … Dimri, A. P. (2018). A Brief review of flood forecasting techniques and their applications. International Journal of River Basin Management, 16(3), 329–344.

Kleczek, M. A., Steeneveld, G. J., & Holtslag, A. A. M. (2014). Evaluation of the weather research and forecasting mesoscale model for GABLS3: Impact of boundary-layer schemes, boundary conditions and spin-up. Boundary-Layer Meteorology, 152(2), 213–243.

Kristianto, A., & Putri, D. M. (2020). Kajian awal simulasi banjir di Bengawan Solo berbasis data GSMaP dan model cuaca numerik: (Studi kasus banjir Bengawan Solo 05 – 07 Maret 2019). Jurnal Meteorologi Klimatologi Dan Geofisika, 6(3), 39-47.

Le, X. H., Ho, H. V., Lee, G., & Jung, S. (2019). Application of long short-term memory (LSTM) neural network for flood forecasting. Water (Switzerland), 11(7).

Moriasi, D. N., Arnold, J. G., Liew, M. W. Van, Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.

Shahzad, A., Gabriel, H. F., Haider, S., Mubeen, A., & Siddiqui, M. J. (2018). Development of a flood forecasting

system using IFAS: a case study of scarcely gauged Jhelum and Chenab river basins. Arabian Journal of Geosciences, 11(14).

Soebroto, A. A., Cholissodin, I., Wihandika, R. C., Frestantiya, M. T., & Arief, Z. El. (2015). Prediksi tinggi muka air (TMA) untuk deteksi dini bencana banjir menggunakan SVR-TVIWPSO. Jurnal Teknologi Informasi Dan Ilmu Komputer, 2(2), 79.

Ulmer, F.-G., & Balss, U. (2016). Spin-up time research on the weather research and forecasting model for atmospheric delay mitigations of electromagnetic waves. Journal of Applied Remote Sensing, 10(1), 016027.

Wilks D.S. (2006). Statistical Methods in The Atmospheric Sciences Second Edition. California: Elsevier.

Zuma, D. S., Murtilaksono, K., & Suharnoto, Y. (2017). Analisis curah hujan dan debit model SWAT dengan metode moving average di DAS Ciliwung Hulu. Journal of Natural Resources and Environmental Management, 7(2).



  • There are currently no refbacks.

Copyright (c) 2021 Jurnal Penelitian Pengelolaan Daerah Aliran Sungai (Journal of Watershed Management Research)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




Published by:

Cooperation Watershed Management Technology Center (WMTC) with Soil & Water Conservation Society of Indonesia (Masyarakat Konservasi Tanah dan Air Indonesia) or MKTI.

eISSN : 2579-5511,  pISSN : 2579-6097


Watershed Management Technology Center (WMTC)
Jl. Jend A. Yani-Pabelan, Kartasura Po.BOX 295 Surakarta 57102
Phone.(0271) 716709 ; Fax(0271) 716959;
Email :

Website :

Copyright : Jurnal Penelitian Pengelolaan Daerah Aliran Sungai (Journal of Watershed Management Research)