CARBON CYCLES, NITROGEN FIXATION AND THE LEGUME-RHIZOBIA SYMBIOSIS AS SOIL CONTAMINANT BIOTEST SYSTEM

Autor(s): Dietrich Werner
DOI: 10.20886/ijfr.2008.5.1.37-52

Abstract

The major pools and turnover  rates of the global carbon (C) cycles are presented and compared to the human production of CO2  from the burning of fossil fuels (e.g. coal and oil) and geothermal  fuels (natural  gases), both categorized as non-renewable energy resources which  in amount  reaches around  6.5 Gigatons C per year. These pools that serve as C-holding stallions  are in the atmosphere,  the land plant biomass, the organic soils carbon, the ocean carbon and the lithosphere. In another related case, the present focus in the area of nitrogen  fixation  is discussed with  data on world  production of grain  legumes  compared  to cereals production and nitrogen  fertilizer use. The focus to understand  the molecular  biology of the legume-rhizobia symbiosis as a major contributor to nitrogen  fixation  is in the areas of signal exchange between  host plants and rhizobia  in the rhizophere including  the nod factor signalling, the infection  and nodule compartmentation and the soils stress factors affecting the symbiosis. The use of the Legume-Rhizobia symbiosis as a biotest system for soil contaminants includes data for cadmium,  arsenate, atrazine,  lindane,  fluoranthene, phenantrene and acenaphthene and also results  on the mechanism,  why the symbiotic system is more sensitive  than test systems with plant growth  parameters.

Keywords

Non-renewable energy source, plant biomass, CO2, nodule

Full Text:

PDF

References

Augé, R.M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3-42.

Barea, J.M., R. Azcón, and C. Azcón-Aguilar. 2002a. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81: 343-351.

Barea, J.M., M. Gryndler, Ph. Lemanceau, H. Schüepp, and R. Azcón, R. 2002b. The rhizosphere of mycorrizal plants, in Mycorrhiza Technology. In: S. Gianinazzi, H. Schüepp, J.M. Barea, and K. Haselwandter (Eds.). Agriculture, from Genes to Bioproduction. Birkhäuser, Basel. 1.

Barea, J.M., D Werner, C. Azcón-Aguilar, and R. Azcón. 2005. Interactions of arbuscular mycorrhiza and nitrogen fixing symbiosis in sustainable agriculture. In: D. Werner and W.E. Newton (Eds.). Agriculture, Forestry, Ecology and the Environment. Springer, Dordrecht. pp. 199-222.

Bianciotto, V., E. Lumini, P. Bonfange, and P. Vandamme. 2002. ‘Candidatus Glomeribacter gigasporum’, an endosymbiont of arbuscular mycorrhizal fungi. International Journal of Systematic and Evolutionary Microbiology 53: 121-124.

Bianciotto, V., A. Genre, P. Jargeat, E. Lumini, G. Bécard, and P. Bonfange. 2004. Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through vegetative spore generations. Applied and Environmental Microbiology 70: 3600-3608.

Bonfante, P. 2005. The rhizosphere and rhizoplane continuum: Where plants, fungi and bacteria meet. In: Rhizosphere 2004 – Perspectives and Challenges – A tribute to Lorenz Hiltner. GSF-Bericht 05/05, Neuherberg. 99.

Boscari, A., K. Mandon, L. Dupont, M.-C. Poggi, and D. Le Rudulier. 2002. BetS is a major glycine betaine/proline betaine transporter required for early osmotic adjustment in Sinorhizobium meliloti. Journal of Bacteriology 184: 2654-2663.

Botsford, J.L. 1984. Osmoregulation in R. meliloti: inhibition of growth by salts. Archives of Microbiology 137: 124-127.

Boumahdi, M., P. Mary, and J.P. Hornez. 2001. Changes in fatty acid composition and degree of unsaturation of (brady)rhizobia as a response to phases of growth, reduced water activities and mild desiccation. Antonie Van Leeuwenhoek 79: 73-79.

Enting, I.G. and J.V. Mansbridge. 1991. Latitudinal distribution of sources and sinks of CO2 results of an inversion study. Tellus 43B: 156-170.

FAO. 2002. Yearbook 2001: Production. Vol. 55. Food and Agriculture Organization of the United Nations, Rome.

Glenn, A.R., W.G. Reeve, R.P. Tiwari, and M.J. Dilworth. 1999. Acid tolerance in root nodule bacteria. In J. Chadvick and G. Cardew (Eds.) Bacterial Responses to pH. John Wiley, Chichester. 112.

Holtmann, G. and E. Bremer. 2004. Thermoprotection of Bacillus subtilis by glycine betaine and structurally related compatible solutes: involvement of Opu-transporters. Journal of Bacteriology 186: 1683-1693.

Kuhlmann, K.-P., R. Stripf, W. Wätjen, F.W. Richter, F. Gloystein, and D. Werner. 1982. Mineral composition of effective and ineffective nodules of Glycine max in comparison to roots: Characterization of developmental stages by differences in nitrogen, hydrogen, sulfur, molybdenum, potassium and calcium content. Angewandte Botanik 56: 315-323.

Murdiyarso, D. 2007. Global warming, deforestation and Indonesia. CIFOR Newsletter online No 44.

Neumann, H., A. Bode-Kirchhoff, A. Madeheim and A. Wetzel. 1998. Toxicity testing of heavy metals with the Rhizobium-legume symbiosis: High sensitivity to cadmium and arsenic compounds. Environmental Science and Pollution Research 5: 28-36.

Neumann, H. and D. Werner. 2000. Gene expression of Medicago sativa inoculated with Sinorhizobium meliloti as modulated by xenobiotics. Zeitschrift für Naturforschung 55c: 222-232.

Poole, K.K. 1999. Summary. In: J. Chadvick and G. Cardew (Eds.). Bacterial Responses to pH. John Wiley, Chichester. 112.

Purcell, L.C. and C.A. King. 1996. Drought and nitrogen source effects on nitrogen nutrition, seed, growth, and yield in soybean. Journal of Plant Nutrition 19: 969-993.

Rojas-Jimenez, K., C. Sohlenkamp, O. Geiger, E. Martinez-Romero, D. Werner, and P. Vinuesa. 2005. A CIC chloride chanel homolog and ornithine- containing membrane lipids of Rhizobium tropici CIAT899 are involved in symbiotic efficiency and acid tolerance. Molecular Plant-Microbe Interactions 11: 1175-1185.

Ruiz-Lozano, J.M., C. Collados, J.M. Barea, and R. Azcón. 2001. Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants, New Phytologist 151: 493-502.

Sadowsky, M.J., H.H. Keyser, and B.B. Bohlool. 1983. Biochemical characterization of fast- and slow-growing rhizobia that nodulate soybeans. International Journal of Systematic Bacteriology 33: 716-722.

Sadowsky, M.J. 2005. Stress factors influencing symbiotic nitrogen fixation. In: D. Werner and W.E. Newton (Eds.). Agriculture, Forestry, Ecology and the Environment. Springer, Dordrecht. 89.

Schiefner, A., J. Breed, L. Bösser, S. Kneip, J. Gade, G. Holtmann, K. Diedrichs, W. Welte, and E. Bremer. 2004. Cation-phi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. Journal of Biological Chemistry 279: 5588-5596.

Souci, S., W. Fachmann, and H. Kraut. 1994. Die Zusammensetzung der Lebensmittel. Nährwert-Tabellen 1986/87. 5. Aufl. Stuttgart: medpharm Scientific Publ.

Steele, H.L., P. Vinuesa, and D. Werner. 2003. A Rhizobium tropici CIAT899 leucine biosynthesis mutant which can survive and grow at pH 3.5. Biology and Fertility of Soils 38: 84-88.

Steil, L., T. Hoffmann, I. Budde, U. Völker, and E. Bremer. 2003. Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. Journal of Bacteriology 185: 6358-6370.

Vance, C.P. 2001. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renevable resources. Plant Physiology 127: 390-397.

Vinuesa, P., F. Neumann-Silkow, C. Pacios-Bras, H.P. Spaink, E. Martinez- Romero, and D. Werner. 2003. Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Molecular Plant-Microbe Interactions 16: 159-168.

Vinuesa, P., M. Leon-Barrios, C. Silva, A. Willems, A. Jarabo-Lorenzo, R. Perez- Galdona, D. Werner, and E. Martinez-Romero. 2005a. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae:Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. Genistearum, Bradyrhizobium genospecies and Bradyrhizobium genospecies . International Journal of Systematic and Evolutionary Microbiology 55: 569-575.

Vinuesa, P., C. Silva, D. Werner, and E. Martinez-Romero 2005b. Population genetics and phytogenetic inference in bacterial molecular systematics: the role of migration and recombination in Bradyrhizobium species cohesion and delineation. Molecular Phylogenetics and Evolution 34: 29-54.

Wais, R.J., D.H. Keating, and S.R. Long. 2002. Structure-function analysis of nod factor-induced root hair calcium spiking in Rhizobium-legume symbiosis. Plant Physiology 129: 211-224.

Werner, D., K.-P- Kuhlmann, F. Gloystein, and F.W. Richter. 1985. Calcium, iron and cobalt accumulation in root hairs of soybean (Glycine max). Zeitschrift für Naturforschung 40c: 912-913.

Werner, D., H. Neumann, H. Steele, A. Wetzel, R. Magasheva, and R. Plisak. 2000. Soil biotests and phytoremediation with the legume-Rhizobium symbiosis. In: F.O. Pedrosa, M. Hungria, M.G. Yates and W.E. Newton (Eds.). Nitrogen Fixation: From Molecules to Crop Productivity. Kluwer Acad. Publ., Dordrecht. pp. 571-574.

Werner, D., S.K. Mahna, V. Mahobia, B.N. Prasad, J.M. Barea, H. Thierfelder, P. Müller, and P. Vinuesa. 2005. Sustainable agriculture/forestry and biological nitrogen fixation. In: Y.-P. Wang, M. Lin, Z.X. Tian, C. Elmerich and W.E. Newton (Eds.) Biological Nitrogen Fixation, Sustainable Agriculture and the Environment. Proceedings of the 14th Int. Nitrogen Fixation Congress. Current Plant Science and Biotechnology in Agriculture, Vol. 41. Springer, Dordrecht. pp. 13-17.

Werner, D. 2005. Production and biological nitrogen fixation of tropical legumes. In: D. Werner and W. Newton (Eds.). Nitrogen Fixation in Agriculture, Forestry, Ecology and the Environment. Springer, Dordrecht. pp. 1-13.

Refbacks

  • There are currently no refbacks.