THE EFFECTIVENESS OF GLUCOMANNAN AND NANO ACTIVATED-CARBON AS HYPERCHOLESTEROL-LOWERING AGENTS

Autor(s): Gunawan Trisandi Pasaribu, Totok K Waluyo, Gustan Pari, Novitri Hastuti
DOI: 10.20886/ijfr.2020.7.2.155-164

Abstract

Porang (konjac) plants have long been used as a food source and traditional medicine. Glucomannan derived from porang has been utilised for various uses such as antidiabetic and antihypercholesterolemia agent. This paper studies the mixture of porang flour and nano activated-carbon and its effect on the cholesterol activity of rats. The mixture of porang and activated carbon were subjected to test for male Sprague Dawley rats to test the antihypercholesterolemia activity. The result showed that concerted anticholesterol activity of porang and nano activated-carbon revealed the cholesterol level decreases in rat's blood. However, the different treatments of unleached and leached porang either leached porang and nano activated-carbon applied in the experiments showed that the levels of cholesterol decrease were slightly different (16–18%). Low glucomannan content as the alleged anticholesterol agent was regarded quite effective in lowering the cholesterol level in rat's blood and comparable with those of simvastatin which achieved 18% reduction. Therefore, it indicates potential utilisation as a functional food for a cholesterol-lowering agent. The involvement of activated carbon in the alleged anticholesterol agent (leached porang flour) did little in enhancing the cholesterol level decrease in rat's blood. The glucomannan in both leached porang flour and leached porang flour + nano activated-carbon shows potential utilisation as an anticholesterol agent. Yet, raw (unleached) porang is prospectively potential as a functional food for cholesterol-lowering.

Keywords

Porang; anticholesterol; nano activated-carbon; glucomannan

Full Text:

PDF

References

Ahmed, M. B., Johir, M. A. H., Zhou, J. L., Ngo, H. H., Nghiem, L. D., Richardson, C., … Bryant, M. R. (2019). Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption. Journal of Cleaner Production, 225, 405–413. doi://10.1016/j.jclepro.2019.03.342.

Ao, W., Fu, J., Mao, X., Kang, Q., Ran, C., Liu, Y., & Zhang, H. (2018). Microwave-assisted preparation of activated carbon from biomass : A review. Renewable and Sustainable Energy Reviews, 92(April), 958–979. doi://10.1016/j.rser.2018.04.051.

Awasthi, G. P., Bhattarai, D. P., Maharjan, B., Kim, K.-S., Park, C. H., & Kim, C. S. (2019). Synthesis and characterisations of activated carbon from Wisteria sinensis seed biomass for energy storage applications. Journal of Industrial and Engineering Chemistry, 72, 265–272. doi://10.1016/j.jiec.2018.12.027.

Cagnon, B., Py, X., Guillot, A., Stoeckli, F., & Chambat, G. (2009). Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresource Technology 100(1), 292–298. doi://10.1016/j.biortech.2008.06.009.

Chua, M., Baldwin, T. C., Hocking, T. J., & Chan, K. (2010). Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. Journal of Ethnopharmacology, 128(2), 268–278. doi://10.1016/j.jep.2010.01.021.

Devi, S., & Singh, R. (2017). Antioxidant and anti-hypercholesterolemic potential of Vitis vinifera leaves. Pharmacognosy Journal, 9(4), 565–572. doi://10.5530/pj.2017.4.90.

Directorate-General for Food Crops. (2013). Porang/Iles-Iles (Amorphophallus onchophyllus). Ditjen Pangan, Kementerian Pertanian, Jakarta.

González-Torres, L., Matos, C., Vázquez-Velasco, M., Santos-López, J. A., Sánchez-Martínez, I., García-Fernández, C., Sánchez-Muniz, F. J. (2016). Glucomannan- and glucomannan plus spirulina-enriched pork affect liver fatty acid profile, LDL receptor expression and antioxidant status in Zucker fa/fa rats fed atherogenic diets. Food and Nutrition Research, 61(1), 1–14. doi://10.1080/16546628.2017.1264710.

Huang, H. B., Wang, Y., Jiao, W. Bin, Cai, F. Y., Shen, M., Zhou, S. G., … Cao, R. (2018). Lotus-Leaf-Derived Activated-carbon-supported nano-CdS as energy-efficient photocatalysts under visible irradiation. ACS Sustainable Chemistry and Engineering, 6(6), 7871–7879. doi://10.1021/acssuschemeng.8b01021.

Huang, Q., Jin, W., Ye, S., Hu, Y., Wang, Y., Xu, W., … Li, B. (2016). Comparative studies of konjac flours extracted from Amorphophallus guripingensis and Amorphophallus rivirei: Based on chemical analysis and rheology. Food Hydrocolloids, 57, 209–216. doi://10.1016/j.foodhyd.2016.01.017.

Illingworth, J. M., Rand, B., & Williams, P. T. (2019). Non-woven fabric activated carbon produced from fibrous waste biomass for sulphur dioxide control. Process Safety and Environmental Protection, 122, 209–220. doi://10.1016/j.psep.2018.12.010.

Indriyani, S., Arisoesilaningsih, E., Widayati, T. & Purnobasuki, H. 2010. Hubungan faktor lingkungan habitat porang (Amorphophallus muelleri) pada lima agroforestry di Jawa Timur dengan kandungn oksalat umbi. Prosiding Basic Science Seminar VII. FMIPA Universitas Brawijaya, Malang.

Jain, A., & Tripathi, S. K. (2015). Nanoporous activated carbon from sugarcane waste for supercapacitor application. Journal of Energy Storage, 4, 121–127. doi://10.1016/j.est.2015.09.010.

Lee, H. M., Baek, J., An, K. H., Park, S. J., Park, Y. K., & Kim, B. J. (2019). Effects of pore structure on n-butane adsorption characteristics of polymer-based activated carbon. Industrial and Engineering Chemistry Research, 58(2), 736-741. doi://10.1021/acs.iecr.8b02715.

Liu, Z., Tabakman, S., & Welsher, K. (2010). Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Research, 2(2), 85–120. doi://10.1007/s12274-009-9009-8.

Malik, A.M. (2013). Peran glukomanan- arang aktif sebagai hipokolesterolemia pada tikus sprague dawley. [tesis]. Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.

Miriyala, N., Ouyang, D., Perrie, Y., Lowry, D., & Kirby, D. J. (2017). Activated carbon as a carrier for amorphous drug delivery: Effect of drug characteristics and carrier wettability. European Journal of Pharmaceutics and Biopharmaceutics, 115, 197–205. doi://10.1016/j.ejpb.2017.03.002.

Mondal, S., Hoang, G., Manivasagan, P., Kim, H., & Oh, J. (2019). Nanostructured hollow hydroxyapatite fabrication by carbon templating for enhanced drug delivery and biomedical applications. Ceramics International, 45(14), 17081–17093. doi://10.1016/j.ceramint.2019.05.260.

Pari, G. (1999). Karakterisasi arang aktif dari arang aktif serbuk gergajian sengon dengan bahan pengaktif NH4HCO. Buletin Penelitian Hasil Hutan, 17(2), 89–100.

Pasaribu, G., Waluyo, T. K., Hastuti, N., Pari, G., & Sahara, E. (2016). Peningkatan kualitas tepung porang. Jurnal Penelitian Hasil Hutan, 34(3), 241–248. doi://10.20886/jphh.2016.34.3.241-248.

Sengupta, A., Kelly, S. C., Dwivedi, N., Thadhani, N., & Prausnitz, M. R. (2014). Efficient intracellular delivery of molecules with high cell viability using nanosecond-pulsed laser-activated carbon nanoparticles. ACS Nano, 8(3), 2889–2899. doi://10.1021/nn500100x.

Shao, W., Arghya, P., Yiyong, M., Rodes, L., & Prakash, S. (2013). Carbon nanotubes for use in medicine: Potentials and limitations. Syntheses and Applications of Carbon Nanotubes and Their Composites. doi://10.5772/51785.

Standar Nasional Indonesia (SNI 7939). (2013). Serpih porang. Badan Standardisasi Nasional.

Tatirat, O., & Charoenrein, S. (2011). Physicochemical properties of konjac glucomannan extracted from konjac flour by a simple centrifugation process. LWT - Food Science and Technology, 44(10), 2059–2063. doi://10.1016/j.lwt.2011.07.019.

Tester, R., & Al-Ghazzewi, F. (2017). Glucomannans and nutrition. Food Hydrocolloids, 68, 246–254. doi://10.1016/j.foodhyd.2016.05.017.

Tester, R. F., & Al-Ghazzewi, F. H. (2013). Mannans and health, with a special focus on glucomannans. Food Research International, 50(1), 384–391. doi://10.1016/j.foodres.2012.10.037.

Volperts, A., Plavniece, A., Dobele, G., Zhurinsh, A., Kruusenberg, I., Kaare, K., … Norkus, E. (2019). Biomass-based activated carbons for fuel cells. 141, 40–45. doi://10.1016/j.renene.2019.04.002.

Wan, H., & Hu, X. (2019). From biomass-derived wastes (bagasse, wheat straw and shavings) to activated carbon with three-dimensional connected architecture and porous structure for Li-ion batteries. Chemical Physics, 521(January), 108–114. doi://10.1016/j.chemphys.2019.01.012.

Xu, W., Wang, S., Ye, T., Jin, W., Liu, J., Lei, J., … Wang, C. (2014). A simple and feasible approach to purify konjac glucomannan from konjac flour – Temperature effect. Food Chemistry, 158, 171–176. doi://10.1016/j.foodchem.2014.02.093.

Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production : A review. Renewable and Sustainable Energy Reviews, 46, 218–235. doi://10.1016/j.rser.2015.02.051.

Yallappa, S., Abdul Manaf, S., & Hegde, G. (2018). Synthesis of a biocompatible nanoporous carbon and its conjugation with fluorescent dye for cellular imaging and targeted drug delivery to cancer cells. New Carbon Materials, 33(2), 162–172. doi://10.1016/S1872-5805(18)60332-4.

Yanuriati, A., Marseno, D. W., Rochmadi, & Harmayani, E. (2017). Characteristics of glucomannan isolated from the fresh tuber of porang (Amorphophallus muelleri Blume). Carbohydrate Polymers, 156, 56–63. doi://10.1016/j.carbpol.2016.08.080.

Yelaware Puttaswamy, N., & Urooj, A. (2016). In vivo antihypercholesterolemic potential of swietenia mahagoni leaf extract. Cholesterol, 2016. doi://10.1155/2016/2048341.

Zeng, Z., Li, X., Zhang, S., & Huang, D. (2017). Characterisation of nano bamboo charcoal drug delivery system for Eucommia ulmoides extract and its anticancer effect in vitro. Pharmacognosy Magazine, 13(51), 498–503. doi://10.4103%2Fpm.pm_256_16.

Refbacks

  • There are currently no refbacks.