Autor(s): Arie Vatresia, Rendra Regen, Ferzha Putra Utama, Widhia Oktariani
DOI: 10.20886/ijfr.2022.9.1.73-85


Forest fires are still one of the most common problems in Indonesia. In fact, many of these forest fires origin from human activities, namely fires that are intentionally raised for a purpose such as widening the land to prepare for the planting season in the Nusa Tenggara Island. Forest fire events can be identified by observing hotspot data which are monitored through remote sensing satellites. Hotspot is an area that has a relatively higher surface temperature than the surrounding area based on certain temperature thresholds monitored by remote sensing satellites. The area is represented as a point that has certain coordinates. The actual fires can be monitored by observing the hotspot attribute, namely Confidence, Brightness Temperature and FRP (Fire Radiate Power). To find the similarities of the three mentioned attributes, the clustering process is carried out to make monitoring easier. The objective of this research is to cluster hotspots in the Nusa Tenggara and Bali Islands from year 2013 to 2018 using the K-Means Clustering Method with 28,519 hot spot data. This could be a benefit for the Ministry of Environment and Forestry in Indonesia to identify the priority level of the area to be monitored. By knowing  this result, the ministry can use this data for patrol priority management. This research successfully clustered three types of hotspot classes based on the risk of fire with details as follow; High Risk Class contains 12,212 data with ranges of mean values of confidence in the range of 49.3–100%, brightness in the range of 305.1–421.3o K and FRP in the range of 2.5–714.3; Medium Risk contains 12,250 data mean values of confidence  with a range of 20.3–74.3%, brightness in the range of 301.06–341.86o K and FRP in the range of 3.6–141.4; and Low Risk contains 4,057 data with a range of mean values of confidence in the range of 0–39.8%, brightness in the range of 300–365.86oK and FRP in the range of 3.5–275.6. All of the clusters were obtained by the implementation of K-Means clustering over the hotspot data and its parameter as mentioned, respectively. The cluster performance showed the confidential value of 88.45% accuracy using 100 hotspot data from 2019


Hotspot; Nusa Tenggara island; Data mining; K-means; Clustering

Full Text:



Albar, I., Jaya, I.N.S., Saharjo, B.H., Kuncahyo, B., Vadrevu, K.P. (2018). Spatio-temporal analysis of land and forest fires in Indonesia using MODIS Active fire dataset. Springer Remote Sensing/Photogrammetry. Springer, Cham. doi://10.1007/978-3-319-67474-2_6.

Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S.I., Jern, M., Kraak, M.J., Schumann, H., Tominski, C., 2010. Space, time and visual analytics. International Journal of Geographical Information Science. 24, 1577–1600. doi://10.1080/13658816.2010.508043.

Atluri, G., Karpatne, A., Kumar, V., 2018. Spatio-temporal data mining: A survey of problems and methods. ACM Computing Surveys. 51(4) Article 83, 1-41. doi://10.1145/3161602.

Broich, M., Hansen, M.C., Potapov, P., Adusei, B., Lindquist, E., Stehman, S. V., 2011. Time-series analysis of multi-resolution optical imagery for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia. International Journal of Applied Earth Observation and Geoinformation. 13, 277–291. doi://10.1016/j.jag.2010.11.004.

Compieta, P., Di Martino, S., Bertolotto, M., Ferrucci, F., Kechadi, T., 2007. Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages and Computing. 18(3), 255-279. doi://10.1016/j.jvlc.2007.02.006.

Endrawati, E., (2018). Identifikasi areal bekas kebakaran hutan dan lahan menggunakan analisis semi otomatis citra satelit landsat. Seminar Nasional Geomatika 2, 273. doi://10.24895/sng.2017.2-0.420.

Fischer, C., Pardos, Z.A., Baker, R.S., Williams, J.J., Smyth, P., Yu, R., Slater, S., Baker, R., Warschauer, M., 2020. Mining big data in education: Affordances and challenges.Review of Research in Education. 44(1), 130-160. doi://10.3102/0091732X20903304.

Foga, S.C., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B., Joseph Hughes, M., Laue, B., (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment. 194 (June), 379–390. doi://10.1016/j.rse.2017.03.026.

Langner, A., & Siegert, F. (2009). Spatiotemporal fire occurrence in Borneo over a period of 10 years. Global Change Biology. 15(1), 48–62. doi://10.1111/j.1365-2486.2008.01828.x.

Li, Z., Liu, Q., Tang, J., & Deng, M.(2018). An adaptive method for clustering spatio-temporal events. Transactions in GIS, 22, 323-347. doi://10.1111/tgis.12312.

Liu, F., & Deng, Y. (2021). Determine the number of unknown targets in open world based on elbow method. IEEE Transactions on Fuzzy Systems. 29 (5), 986-995. doi://10.1109/TFUZZ.2020.2966182.

Obregon, A., Gehrig-Downie, C., Gradstein, S.R., & Bendix, J. (2014). The potential distribution of tropical lowland cloud forest as revealed by a novel MODIS-based fog/low stratus night-time detection scheme. Remote sensing of environment. 155, 312–324. doi://10.1016/j.rse.2014.09.005.

Pei, T., Song, C., Guo, S., Shu, H., Liu, Y., Du, Y., Ma, T., & Zhou, C. (2020). Big geodata mining: Objective, connotations and research issues. Journal of Geographical Sciences. 30, 251-266. doi://10.1007/s11442-020-1726-7.

Phua, E.J., & Batcha, N.K. (2020). Comparative analysis of ensemble algorithms’prediction accuracies in education data mining. Journal of Critical Review. 7(3), 37-40 doi://10.31838/jcr.07.03.06.

Purnima, B., Arvind, K., Bholowalia, P., & Kumar, A. (2014). EBK-means: A clustering technique based on elbow method and K-means in WSN. International Journal of Computer Applications. 105(9),17-24. doi:// 10.5120/18405-9674.

R.A., D. (1999). A review of fire projects in Indonesia (1982-1998). doi://10.17528/cifor/000564.

Ren, Y., Wang, N., Li, M., & Xu, Z. (2020). Deep density-based image clustering. Knowledge-Based Systems. 197 (7). doi://10.1016/j.knosys.2020.105841.

Riyanto, I.A., Cahyadi, A., Kurniadhini, F., Bachtiar, H., Apriyana, D., & Caraka, B.K.A. (2020). Understanding forest fire management in indonesia from a global perspective. ASEAN Journal on Science & Technology for Development. 37(1). doi://10.29037/ajstd.593.

Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. EURASIP Journal on Wireless Communications and Networking. 31. doi://10.1186/s13638-021-01910-w.

Sirat, E.F., Setiawan, B.D., & Ramdani, F. (2019). Comparative analysis of K-means and isodata algorithms for clustering of fire point data in Sumatra region. The 4th International Symposium on Geoinformatics, ISyG 2018. doi://10.1109/ISYG.2018.8611879.

Sutomo, & van Etten, E. (2018). Spatial and temporal patterns of fires in tropical savannas of Indonesia. Singapore Journal of Tropical Geography. 39, 281-299. doi://10.1111/sjtg.12243.

Tacconi, L., Moore, P. F., & Kaimowitz, D. (2007). Fires in tropical forests - What is really the problem? Lessons from Indonesia. Mitigation and Adaptation Strategies for Global Change. 12(1)55-66.doi://10.1007/s11027-006-9040-y.

Thah, P. H., & Sitanggang, I.S. (2016). Contextual outlier detection on hotspot data in Riau Province using K-means algorithm. Procedia Environmental Sciences. 33, 258-268. doi://10.1016/j.proenv.2016.03.077.

Tork, H.F. (2012). Spatio-temporal clustering methods classification. Proceeding of the 7th Doctoral Symposium in Informatic Engineering.

Wijedasa, L.S., Sloan, S., Michelakis, D. G., & Clements, G.R. (2012). Overcoming limitations with landsat imagery for mapping of peat swamp forests in sundaland. Remote Sensing. 4, 2595–2618. doi://10.3390/rs4092595.

Wu, C., Liu, G., Zhang, X., He, Z., & Zhang, Z. (2016). Discussion on geological science big data and its applications. Kexue Tongbao/Chinese Science Bulletin. 61. doi://10.1360/N972015-01035.

Wu, J. (2012). Advances in K-means clustering: A data mining thinking. Springer Theses: recognizing outstanding Ph.D. Research.

Wu, W., & Peng, M. (2017). A data mining approach combining K-means clustering with bagging neural network for short-term wind power forecasting. IEEE Internet of Things Journal. 4(4), 979-986. doi://10.1109/JIOT.2017.2677578.

Young, N.E., Anderson, R.S., Chignell, S.M., Vorster, A.G., Lawrence, R., & Evangelista, P.H. (2017). A survival guide to Landsat preprocessing. Ecology, 98, 920–932. doi://10.1002/ecy.1730.

Zhu, Z., & Woodcock, C.E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing Environment, 144, 152–171. doi://10.1016/j.rse.2014.01.011.


  • There are currently no refbacks.