FIXATION PROCESS OF LAMINATED BAMBOO COMPRESSION FROM CURVED CROSS-SECTION SLATS

Autor(s): Teguh Darmawan, Adik Bahanawan, Danang S. Adi, Wahyu Dwianto, Naresworo Nugroho
DOI: 10.20886/ijfr.2021.8.2.159-171

Abstract

Removing the outer part of bamboo for manufacturing flat bamboo lamination has disadvantage on the density of the product. The purpose of this experiment was to investigate the fixation of compressed bamboo from curved cross-section slats. The compression of bamboo slats using densification technique was aimed for uniform density. Furthermore, steam treatments were conducted to fix the deformation. The compressed bamboo slats revealed that the density of the samples at the bottom parts increased from 0.40–0.56 g/cm3 to 0.89–1.05 g/cm3 after pressing with a compression level between 46.98–63.97%, while the samples in the middle parts increased from 0.70–0.83 g/cm3 to 1.02–1.18 g/cm3 with the compression level of 32.92–41.50%. These results were slightly higher than that of the upper parts, which was between 0.91–0.98 g/cm3. The recovery of set decreased and the weight loss increased with  increasing  temperature and steam treatment time. Fixation of compressive deformation could be achieved at 160°C within 60 minutes. The bottom parts of samples experienced a slightly greater weight loss compared to the middle parts, i.e. 8.38% and 7.49%, respectively. The anatomical structure of bamboo tended to deform during densification process. Furthermore, the steam treatments affected  the colour of densified bamboo which became darker. From this experiment, it can be concluded that the manufacture of laminated bamboo from bamboo slats can be uniformed in strength by equalizing the density at the bottom and middle with the upper parts through the densification technique. However, further research should be conducted to know the delamination and shear strength of the bamboo lamination.

Keywords

laminated bamboo; curved cross-section slats; fixation process; steam treatment

Full Text:

PDF

References

Amin, Y., & Dwianto, W. (2006). Pengaruh suhu dan tekanan uap air terhadap fiksasi kayu kompresidengan menggunakan close system compression. Journal of Tropical Wood Science and Technology, 4(2), 55–60.

Antikainen, T., Paajanen, O., Rautkari, L., Kutnar, A., Kamke, F. A., & Hughes, M. (2014). Simultaneous drying and densification of silver birch (Betula pendula L.) veneers: Analysis of morphology, thickness swelling, and density profile. Wood Science and Technology, 48(2), 325–336. doi://10.1007/s00226-013-0605-0.

Bao, M., Huang, X., Jiang, M., Yu, W., & Yu, Y. (2017). Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa). Journal of Wood Science, 63(6),591–605. doi://10.1007/s10086-017-1661-0.

Budiana, I., Kusmawan, D., & Rusli. (2014). Sifat fisik dan mekanik bambu laminasi sistem bilah lengkung dan penambahan air suling sebagai optimasi polymer isocyanate. In W. Suwinarti, I. Kusuma, Erwin, & Ismail (Eds.), Prosiding Seminar Nasional Masyarakat Peneliti Kayu (MAPEKI) XVI (103–112). Indonesian Wood Research Society (MAPEKI), Bogor.

Chen, H. (2015). Lignocellulose biorefinery feedstock engineering. In Lignocellulose Biorefinery Engineering Principles and Applications (pp. 37–86). Elsevier Ltd. doi://10.1016/C2014-0-02702-5.

Darwis, A., Wahyudi, I., Dwianto, W., & Cahyono, T. D. (2017). Densified wood anatomical structure and the effect of heat treatment on the recovery of set. Journal of the Indian Academy of Wood Science, 14, 24–31. doi://10.1007/s13196-017-0184-z.

Dotan, A. (2014). Biobased Thermosets. In H. Dodiuk & S. Goodman (Eds.), Handbook of Thermoset Plastics Book (3rd ed., 577–622). doi://10.1016/C2011-0-09694-1.

Dwianto, W, Morooka, T., & Norimoto, M. (1998). The compressive stress relaxation of wood during heat treatment. Journal of the Japan Wood Research Society, 44(6), 403–409.

Dwianto, W, Morooka, T., Norimoto, M., & Kitajima, T. (1999). Stress relaxation of sugi (Cryptomeria japonica D. Don) wood in radial compression under high temperature steam. Holzforschung, 53(5), 541–546. doi://10.1515/HF.1999.089.

Dwianto, Wahyu, Damayanti, R., Darmawan, T., Sejati, P. S., Akbar, F., Adi, D. S., … Triwibowo, D. (2020). Bending strength of lignocellulosic materials in softening condition. Indonesian Journal of Forestry Research, 7(1), 59–70. doi://10.20886/ijfr.2020.7.1.59-70.

Esteves, B. M., & Pereira, H. M. (2009). Wood modification by heat treatment: A review. BioResources, 4(1), 370–404. doi://10.15376/biores.4.1.370-404.

Fang, C. H., Mariotti, N., Cloutier, A., Koubaa, A., & Blanchet, P. (2012). Densification of wood veneers by compression combined with heat and steam. European Journal of Wood and Wood Products, 70, 155–163. doi://10.1007/s00107-011-0524-4.

Fazita, N., Jayaraman, K., Bhattacharyya, D., Haafiz, M., Saurabh, C., & Hussin, M. (2016). Green composites made of bamboo fabric and poly (lactic) acid for packaging applications-A review. Materials, 9(6), 435.

Guo, J., Yin, J., Zhang, Y., Salmén, L., & Yin, Y. (2017). Effects of thermo-hygro-mechanical (THM) treatment on the viscoelasticity of in-situ lignin. Holzforschung, 71(6), 455–460. doi://10.1515/hf-2016-0201.

Hastuti, R. W., Primairyani, A., & Ansori, I. (2018). Studi keanekaragaman jenis bambu di Desa Tanjung Terdana Bengkulu Tengah. Diklabio: Jurnal Pendidikan dan Pembelajaran Biologi, 2(1), 96–102. doi://10.33369/diklabio.2.1.96-102.

Inoue, M., Norimoto, M., Tanahashi, M., & Rowell, R. (1993). Steam or heat fixation of compressed wood. Wood and Fiber Science, 25(3), 224–235.

ISO. (2004). International Standard ISO 22157-1. Bamboo-Determination of Physical and Mechanical Properties-Part 1: Requirements (1st ed.). Geneva: International Organization for Standardization.

Kabir, M., Bhattacharjee, D., & Sattar, M. (1993). Effect of age and height on strength properties of Dendrocalamus longispathus. Bamboo Information Centre India Bulletin, 3(1), 11–15.

Kariz, M., Kuzman, M. K., Sernek, M., Hughes, M., Rautkari, L., Kamke, F. A., & Kutnar, A. (2017). Influence of temperature of thermal treatment on surface densification of spruce. European Journal of Wood and Wood Products, 75, 113–123. doi://10.1007/s00107-016-1052-z.

Khalil, H., Bhat, I., Jawaid, M., Zaidon, A., Hermawan, D., & Hadi, Y. (2012). Bamboo fiber reinforced biocomposites-A review. Materials and Design, 42, 353–368.

Laine, K., Rautkari, L., & Hughes, M. (2013). The effect of process parameters on the hardness of surface densified Scots pine solid wood. European Journal of Wood and Wood Products, 71, 13–16. doi://10.1007/s00107-012-0649-0.

Laine, K., Segerholm, K., Rautkari, L., Wa, M., & Hughes, M. (2016). Wood densification and thermal modification : Hardness, set-recovery and micromorphology. Wood science and technology, 50(5), 883–894. doi://10.1007/s00226-016-0835-z.

Li., L., Wang, Y., Wang, G., Cheng, H., & Han, X. (2010). Evaluation of properties of natural bamboo fiber for application in summer textiles. Journal of Fiber Bioengineering and Informatics, 3(2), 94–99.

Li, H. T., Zhang, Q. S., Huang, D. S., & Deeks, A. J. (2013). Compressive performance of laminated bamboo. Composites part B: Engineering, 54(1), 319–328. doi://10.1016/j.compositesb.2013.05.035.

Loiwatu, M., & Manuhuwa, E. (2008). Chemical component and anatomical feature of three bamboo species from Seram, Maluku. Agritech, 28(2), 76–83.

Mahdavi, M., Clouston, P. L., & Arwade, S. R. (2012). A low-technology approach toward fabrication of laminated bamboo lumber. Construction and Building Materials, 29, 257–262. doi://10.1016/j.conbuildmat.2011.10.046.

Mujiman, Priyosulistyo, H., Sulistyo, D., & Prayitno, T. A. (2014). Influence of shape and dimensions of lamina on shear and bending strength of vertically glue laminated bamboo beam. Procedia Engineering, 95(Scescm), 22–30. doi://10.1016/j.proeng.2014.12.161.

Murda, R. A., Nawawi, D. S., Maulana, S., Maulana, M. I., Park, S. H., & Febrianto, F. (2018). Perubahan kadar komponen kimia pada tiga jenis bambu akibat proses steam dan pembilasan. Jurnal Ilmu Teknologi Kayu Tropis, 16(2), 102–114.

Navi, P., & Heger, F. (2004). Combined densification and mechanical processing of wood. Materials Research Society Bulletin, 29(5), 332–336.

Nugroho, N., & Ando, N. (2000). Development of structural composite products made from bamboo I: Fundamental properties of bamboo zephyr board. Journal of Wood Science, 46, 68–74.

Nugroho, N., & Ando, N. (2001). Development of structural composite products made from bamboo II: Fundamental properties of laminated bamboo lumber. Journal of Wood Science, 47(3), 237–242. doi://10.1007/BF01171228.

Obataya, E., & Chen, S. (2018). Shape recovery and anomalous swelling of steam compressed wood by swimming ring like expansion of cell lumina. Wood Science and Technology, 52(4). doi://10.1007/s00226-018-1018-x.

Patel, P., Maiwala, A., Gajera, V., Patel, J., & Magdallawala, S. (2013). Performance evaluation of bamboo as reinforcement in design of construction element. International Refereed Journal of Engineering and Science, 2(4), 55–63. Retrieved from www.irjes.comwww.irjes.com at 16 April 2020.

Rahmawati, Baharuddin, & Putranto, B. (2019). Potensi dan pemanfaatan bambu tali (Gigantochloa apus) di Desa Leu Kecamatan Bolo Kabupaten Bima. Jurnal Perennial, 15(1), 27-31.

Rosalita, Y., Nugroho, N., Subiyanto, B., & Kusumah, S. (2009). Pola distribusi kekuatan mekanik bambu betung (Dendrocalamus asper) dan bambu sembilang (Dendrocalamus gigantochloa). In S. Kusumah, Y. Massijaya, A. Firmanti, Subyakto, D. Nawawi, N. Wistara, … L. Risanto (Eds.), Prosiding Seminar Nasional Masyarakat Peneliti Kayu (MAPEKI) XII (pp. 78–85). Bogor: Indonesian Wood Research Society (MAPEKI).

Sattar, M., Kabir, M., & Bhattacharjee, D. (1990). Effect of age and height position of muli (Melocanna baccifera) and borak (Bambusa balcooa) bamboos on their physical and mechanical properties. Bangladesh Journal of Forest Science, 19(1/2), 29–38.

Statistics Indonesia. (2019). Statistics of Forestry Production 2018. Jakarta: BPS-Statistics Indonesia.

Subiyanto, B., Dwianto, W., & Higashihara, T. (2011). Permanent fixation of radially compressed bamboo in dry condition by heating and its mechanism. Journal of Tropical Wood Science and Technology, 9(1), 9–18.

Sulastiningsih, I. M., & Nurwati. (2009). Physical and mechanical properties of laminated bamboo board. Journal of Tropical Forest Science, 21(3), 246–251.

Sutiyono. (2010). Penggunaan efektif batang enam jenis bamboo sebagai bahan baku bambu lamina. In D. Nawawi, M. Massijaya, N. Wistara, Suhasman, I. Rahayu, Arinana, & S. Kusumah (Eds.), Prosiding Seminar Nasional Masyarakat Peneliti Kayu (MAPEKI) XIII (pp. 555–560). Bogor: Indonesian Wood Research Society (MAPEKI).

Yu, H. Q., Jiang, Z. H., Hse, C. Y., & Shupe, T. F. (2008). Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). Journal of Tropical Forest Science, 20(4), 258–263.

Zhan, J., & Avramidis, A. (2015). Needle fir wood modified by surface densification and thermal post-treatment-hygroscopicity and swelling behavior. European Journal of Wood and Wood Products, 74(1), 49–56. doi://10.1007/s00107-015-0969-y.

Zhang, Q., Jiang, S., & Tang, Y. (2002). INBAR.Techical Report No 26. Industrial Utilization on Bamboo. Beijing: Max Publishers Limited.

Refbacks

  • There are currently no refbacks.