Autor(s): Novitri Hastuti, Luciasih Agustini, Erlina Nurul Aini, Dian Anggraini Indrawan, Gustan Pari, Heru Satrio Wibisono
DOI: 10.59465/ijfr.2023.10.2.239-249


Non-wood paper production, such as bamboo paper, is an alternative to meet the massive demand for paper consumption in the recent era. Bamboo paper, made from Bambusa vulgaris fibers and manufactured with the addition of activated nano-carbon, shows an improvement in paper quality. However, there is a potential worry with the incorporation of activated carbon since it may hinder the degradation process of paper. Concerning the substance's life cycle, degradation assisted by the fungal decomposer of this new product is crucial. This study investigated the effects of the white-rot fungi, viz. Phlebiopsis sp and Pycnoporus sp., on the degradation of bamboo paper with- or without- activated nano-carbon (BPAC and BPNAC).  In vitro experiments that combined two variables (Fungal agents and Paper types) were carried out for 12 weeks. The results revealed that Pycnoporus sp. was more effective in decomposing both BPAC and BPNAC rather than Phlebiopsis sp. After being degraded by Phlebiopsis sp. and Pycnoporus sp. for 12 weeks, the remaining mass of BPAC was 64.14% and 48.96%, respectively, while the BPNAC was 69.89% and 38.25%, respectively. The ability of these fungal agents on composite-paper degradation was compared to other similar studies. Further investigation and possible applications were discussed


Bamboo; carbon; degradation; fungi; paper; white-rot

Full Text:



Adney, B., & Baker, J. (1996). Measurement of Cellulase Activities: Laboratory Analytical Procedure (LAP).

Agustini, L., Efiyanti, L., Faulina, S. A., & Santoso, E. (2012). Isolation and characterization of cellulase- and xylanase- producing microbes isolated from tropical forests in Java and Sumatra. International Journal of Environment and Bioenergy, 3(3), 154–167.

Agustini, L., Irianto, R. S., Turjaman, M., Faulina, S. A., Ariantari, R., Stephandra, S., Yuniar, H., Aryanto, Najmulah, & Yani, A. (2017). Pengaruh kondisi kultur pada aktivitas selulase isolat Pycnoporus sp. dan Phlebiopsis sp. Jurnal Selulosa, 7(2), 79–90.

Ainun, Z. M. A., Muhammad, K. I., Rasmina, H., Hazwani, H. A., Sharmiza, A., Naziratulasikin, A. K., & Latifah, J. (2018). Effect of chemical pretreatment on pulp and paper characteristics of bamboo Gigantochloa scorthechinii kraft fibers. IOP Conference Series: Materials Science and Engineering 368, 368(1), 012044.

Baker, P. W., Charlton, A., & Hale, M. D. C. (2015). Increased delignification by white rot fungi after pressure refining Miscanthus. Bioresource Technology, 189, 81–86.

Bari, E., Nazarnezhad, N., Mahmoud, S., Ali, M., Ghanbary, T., Mohebby, B., Schmidt, O., & Clausen, C. A. (2015). Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. International Biodeterioration & Biodegradation, 104, 231–237.

Belal, E. (2008). Biodegradation of wastepaper by Trichoderma viride and using bioprocessed materials in biocontrol of damping-off of pea caused by Pythium debaryanum. Journal of Agriculture Reseasrch, 34(3), 567–587.

Bergadi, F. El, Laachari, F., Elabed, S., Mohammed, I. H., & Ibnsouda, S. K. (2014). Cellulolytic potential and filter paper activity of fungi isolated from ancients manuscripts from the Medina of Fez. Annals of Microbiology, 64(2), 815–822.

Darwesh, O. M., El-maraghy, S. H., Abdel-rahman, H. M., & Zaghloul, R. A. (2020). Improvement of paper wastes conversion to bioethanol using novel cellulose degrading fungal isolate. Fuel, 262(October 2019), 116518.

de Jesús Barraza-García, F., Pérez-Miranda, S., Munguia-Lopez, J.G., Lopez-Urias, F., & Muñoz-Sandoval, E. (2022). Carbon nanotubes as antimicrobial agents: Trends and Perspectives. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham.

Dong, X. Q., Yang, J. S., Zhu, N., Wang, E. T., & Yuan, H. L. (2013). Sugarcane bagasse degradation and characterization of three white-rot fungi. Bioresource Technology, 131, 443–451.

Drago, E., Campardelli, R., Pettinato, M., & Perego, P. (2020). Innovations in smart packaging concepts for food: An extensive review. Foods, 9(11), 1–42.

Hastuti, N., Agustini, L., Indrawan, D. A., & Pari, G. (2021). Influence of nano-activated carbon on biodegradation of bamboo paper in the soil. IOP Conference Series: Earth and Environmental Science 914, 914(1), 012057.

Herliyana, E. N., Noverita, & Sudirman, L. I. (2005). Fungi pada bambu kuning (Bambusa vulgaris Schard var. vitata) dan bambu hijau (Bambusa vulgaris Schard var. vulgaris) serta tingkat degradasi yang diakibatkannya. Jurnal Teknologi Hasil Hutan, 18(1), 1–7.

Indrawan, D. A., Hastuti, N., Efiyanti, L., & Pari, G. (2018). Pemanfaatan teknologi kertas nano sebagai pembungkus wortel (Utilization of nano carbon paper technology as carrot wrapping). Jurnal Penelitian Hasil Hutan, 36(2), 139–158.

Jablonsky, M., & Sima, J. (2021). Oxidative degradation of paper – A minireview. Journal of Cultural Heritage, 48, 269–276.

Jin, C., Wu, C., Liu, P., Yu, H., Yang, Y., & Zhang, H. (2022). Kinetics of cellulose degradation in bamboo paper. Nordic Pulp and Paper Research Journal, 37(3), 480–488.

Kathiravan, D., Huang, B. R., & Saravanan, A. (2022). Surface modified highly porous egg-shell membrane derived granular activated carbon coated on paper substrate and its humidity sensing properties. Materials Chemistry and Physics, 277(November 2021), 125486.

Kathirgamanathan, M., Abayasekara, C. L., Kulasooriya, S. A., Wanigasekera, A., & Ratnayake, R. R. (2017). Evaluation of 18 isolates of basidiomycetes for Lignocellulose degrading enzymes. Ceylon Journal of Science, 46(4), 77.

Kwon, H., Ryu, I., & Yim, S. (2021). Effective embedment of activated carbons into the traditional Korean paper ‘Hanji’ and its application to flexible supercapacitors. Current Applied Physics, 26(March), 35–40.

Lee, C. K., Darah, I., & Ibrahim, C. O. (2011). Production and optimization of cellulase enzyme using Aspergillus niger USM AI 1 and comparison with Trichoderma reesei via solid state fermentation system. Biotechnology Research International, 2011, 1–6.

Lintang, W., Susetyo-Salim, T., Oetari, A., & Sjamsuridzal, W. (2021). Isolation and characterization of fungi from deteriorated old manuscripts from Banyumas, collection of Library of Universitas Indonesia. IOP Conference Series: Earth and Environmental Science, 948(1), 012031.

Liu, D., Wang, X., Peng, Z., Sun, X., Chen, S., Li, F., Xia, H., & Lu, T. (2012). The FPase properties and morphology changes of a cellulolytic bacterium, Sporocytophaga sp. JL-01, on decomposing filter paper cellulose. J. Gen. Appl. Microbiol., 58, 429–436.

Mocan, T., Matea, C. T., Pop, T., Mosteanu, O., Buzoianu, A. D., Suciu, S., Puia, C., Zdrehus, C., Iancu, C., & Mocan, L. (2017). Carbon nanotubes as anti-bacterial agents. Cellular and Molecular Life Sciences, 74(19), 3467–3479.

Mrudula, S., & Murugammal, R. (2011). Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Brazilian Journal of Microbiology, 42(3), 1119–1127.

Nowińska, A., Baranowska, J., & Malinowski, M. (2019). The analysis of biodegradation process of selected paper packaging waste. Infrastructure and Ecology of Rural Areas, 3(1), 253–261.

Omerović, N., Djisalov, M., Živojević, K., Mladenović, M., Vunduk, J., Milenković, I., Knežević, N., Gadjanski, I., & Vidić, J. (2021). Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2428–2454.

Ortega, N., Busto, M. D., & Perez-Mateos, M. (2001). Kinetics of cellulose sacchariÿcation by Trichoderma reesei cellulases. International Biodeterioration & Biodegradation, 47, 7–14.

Purkan, Purnama, H. D., & Sumarsih, S. (2015). Production of cellulase enzyme from Aspergilus niger using rice husk and bagasse as inducer. Jurnal Ilmu Dasar, 16(2), 95–102.

Refugio, J., Nieto-villena, A., Ángel, J., & Cruz-mendoza, D. (2017). Monitoring the natural aging degradation of paper by fluorescence. Journal of Cultural Heritage, 26, 22–27.

Saito, Y., Tsuchida, H., Matsumoto, T., Makita, Y., Kawashima, M., Kikuchi, J., & Matsui, M. (2018). Screening of fungi for decomposition of lignin-derived products from Japanese cedar. Journal of Bioscience and Bioengineering, 126(5), 573–579.

Taskin, E., Teresa, M., Altomare, C., & Loffredo, E. (2019). Biochar and hydrochar from waste biomass promote the growth and enzyme activity of soil-resident ligninolytic fungi. Heliyon, 5(November 2018).

Wu, Q., Miao, W. S., Zhang, Y. D., Gao, H. J., & Hui, D. (2020). Mechanical properties of nanomaterials: A review. Nanotechnology Reviews, 9(1), 259–273.


  • There are currently no refbacks.