BIOLOGICAL DEGRADATION OF BAMBOO PAPER BY TWO WHITE-ROT FUNGAL SPECIES

Autor(s): Novitri Hastuti, Luciasih Agustini, Erlina Nurul Aini, Dian Anggraini Indrawan, Gustan Pari, Heru Satrio Wibisono
DOI: 10.59465/ijfr.2023.10.2.239-249

Abstract

Non-wood paper production, such as bamboo paper, is an alternative to meet the massive demand for paper consumption in the recent era. Bamboo paper, made from Bambusa vulgaris fibers and manufactured with the addition of activated nano-carbon, shows an improvement in paper quality. However, there is a potential worry with the incorporation of activated carbon since it may hinder the degradation process of paper. Concerning the substance's life cycle, degradation assisted by the fungal decomposer of this new product is crucial. This study investigated the effects of the white-rot fungi, viz. Phlebiopsis sp and Pycnoporus sp., on the degradation of bamboo paper with- or without- activated nano-carbon (BPAC and BPNAC).  In vitro experiments that combined two variables (Fungal agents and Paper types) were carried out for 12 weeks. The results revealed that Pycnoporus sp. was more effective in decomposing both BPAC and BPNAC rather than Phlebiopsis sp. After being degraded by Phlebiopsis sp. and Pycnoporus sp. for 12 weeks, the remaining mass of BPAC was 64.14% and 48.96%, respectively, while the BPNAC was 69.89% and 38.25%, respectively. The ability of these fungal agents on composite-paper degradation was compared to other similar studies. Further investigation and possible applications were discussed

Keywords

Bamboo; carbon; degradation; fungi; paper; white-rot

Full Text:

PDF

References

Adney, B., & Baker, J. (1996). Measurement of Cellulase Activities: Laboratory Analytical Procedure (LAP). www.nrel.gov

Agustini, L., Efiyanti, L., Faulina, S. A., & Santoso, E. (2012). Isolation and characterization of cellulase- and xylanase- producing microbes isolated from tropical forests in Java and Sumatra. International Journal of Environment and Bioenergy, 3(3), 154–167.

Agustini, L., Irianto, R. S., Turjaman, M., Faulina, S. A., Ariantari, R., Stephandra, S., Yuniar, H., Aryanto, Najmulah, & Yani, A. (2017). Pengaruh kondisi kultur pada aktivitas selulase isolat Pycnoporus sp. dan Phlebiopsis sp. Jurnal Selulosa, 7(2), 79–90.

Ainun, Z. M. A., Muhammad, K. I., Rasmina, H., Hazwani, H. A., Sharmiza, A., Naziratulasikin, A. K., & Latifah, J. (2018). Effect of chemical pretreatment on pulp and paper characteristics of bamboo Gigantochloa scorthechinii kraft fibers. IOP Conference Series: Materials Science and Engineering 368, 368(1), 012044. https://doi.org/10.1088/1757-899X/368/1/012044

Baker, P. W., Charlton, A., & Hale, M. D. C. (2015). Increased delignification by white rot fungi after pressure refining Miscanthus. Bioresource Technology, 189, 81–86. https://doi.org/10.1016/j.biortech.2015.03.056

Bari, E., Nazarnezhad, N., Mahmoud, S., Ali, M., Ghanbary, T., Mohebby, B., Schmidt, O., & Clausen, C. A. (2015). Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. International Biodeterioration & Biodegradation, 104, 231–237. https://doi.org/10.1016/j.ibiod.2015.03.033

Belal, E. (2008). Biodegradation of wastepaper by Trichoderma viride and using bioprocessed materials in biocontrol of damping-off of pea caused by Pythium debaryanum. Journal of Agriculture Reseasrch, 34(3), 567–587. https://www.researchgate.net/publication/267024992

Bergadi, F. El, Laachari, F., Elabed, S., Mohammed, I. H., & Ibnsouda, S. K. (2014). Cellulolytic potential and filter paper activity of fungi isolated from ancients manuscripts from the Medina of Fez. Annals of Microbiology, 64(2), 815–822. https://doi.org/10.1007/s13213-013-0718-6

Darwesh, O. M., El-maraghy, S. H., Abdel-rahman, H. M., & Zaghloul, R. A. (2020). Improvement of paper wastes conversion to bioethanol using novel cellulose degrading fungal isolate. Fuel, 262(October 2019), 116518. https://doi.org/10.1016/j.fuel.2019.116518

de Jesús Barraza-García, F., Pérez-Miranda, S., Munguia-Lopez, J.G., Lopez-Urias, F., & Muñoz-Sandoval, E. (2022). Carbon nanotubes as antimicrobial agents: Trends and Perspectives. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-030-91346-5_47

Dong, X. Q., Yang, J. S., Zhu, N., Wang, E. T., & Yuan, H. L. (2013). Sugarcane bagasse degradation and characterization of three white-rot fungi. Bioresource Technology, 131, 443–451. https://doi.org/10.1016/j.biortech.2012.12.182

Drago, E., Campardelli, R., Pettinato, M., & Perego, P. (2020). Innovations in smart packaging concepts for food: An extensive review. Foods, 9(11), 1–42. https://doi.org/10.3390/foods9111628

Hastuti, N., Agustini, L., Indrawan, D. A., & Pari, G. (2021). Influence of nano-activated carbon on biodegradation of bamboo paper in the soil. IOP Conference Series: Earth and Environmental Science 914, 914(1), 012057. https://doi.org/10.1088/1755-1315/914/1/012057

Herliyana, E. N., Noverita, & Sudirman, L. I. (2005). Fungi pada bambu kuning (Bambusa vulgaris Schard var. vitata) dan bambu hijau (Bambusa vulgaris Schard var. vulgaris) serta tingkat degradasi yang diakibatkannya. Jurnal Teknologi Hasil Hutan, 18(1), 1–7.

Indrawan, D. A., Hastuti, N., Efiyanti, L., & Pari, G. (2018). Pemanfaatan teknologi kertas nano sebagai pembungkus wortel (Utilization of nano carbon paper technology as carrot wrapping). Jurnal Penelitian Hasil Hutan, 36(2), 139–158. https://doi.org/10.20886/jphh.2018.36.2.139-158

Jablonsky, M., & Sima, J. (2021). Oxidative degradation of paper – A minireview. Journal of Cultural Heritage, 48, 269–276. https://doi.org/10.1016/j.culher.2021.01.014

Jin, C., Wu, C., Liu, P., Yu, H., Yang, Y., & Zhang, H. (2022). Kinetics of cellulose degradation in bamboo paper. Nordic Pulp and Paper Research Journal, 37(3), 480–488. https://doi.org/10.1515/npprj-2022-0027

Kathiravan, D., Huang, B. R., & Saravanan, A. (2022). Surface modified highly porous egg-shell membrane derived granular activated carbon coated on paper substrate and its humidity sensing properties. Materials Chemistry and Physics, 277(November 2021), 125486. https://doi.org/10.1016/j.matchemphys.2021.125486

Kathirgamanathan, M., Abayasekara, C. L., Kulasooriya, S. A., Wanigasekera, A., & Ratnayake, R. R. (2017). Evaluation of 18 isolates of basidiomycetes for Lignocellulose degrading enzymes. Ceylon Journal of Science, 46(4), 77. https://doi.org/10.4038/cjs.v46i4.7470

Kwon, H., Ryu, I., & Yim, S. (2021). Effective embedment of activated carbons into the traditional Korean paper ‘Hanji’ and its application to flexible supercapacitors. Current Applied Physics, 26(March), 35–40. https://doi.org/10.1016/j.cap.2021.03.016

Lee, C. K., Darah, I., & Ibrahim, C. O. (2011). Production and optimization of cellulase enzyme using Aspergillus niger USM AI 1 and comparison with Trichoderma reesei via solid state fermentation system. Biotechnology Research International, 2011, 1–6. https://doi.org/10.4061/2011/658493

Lintang, W., Susetyo-Salim, T., Oetari, A., & Sjamsuridzal, W. (2021). Isolation and characterization of fungi from deteriorated old manuscripts from Banyumas, collection of Library of Universitas Indonesia. IOP Conference Series: Earth and Environmental Science, 948(1), 012031. https://doi.org/10.1088/1755-1315/948/1/012031

Liu, D., Wang, X., Peng, Z., Sun, X., Chen, S., Li, F., Xia, H., & Lu, T. (2012). The FPase properties and morphology changes of a cellulolytic bacterium, Sporocytophaga sp. JL-01, on decomposing filter paper cellulose. J. Gen. Appl. Microbiol., 58, 429–436.

Mocan, T., Matea, C. T., Pop, T., Mosteanu, O., Buzoianu, A. D., Suciu, S., Puia, C., Zdrehus, C., Iancu, C., & Mocan, L. (2017). Carbon nanotubes as anti-bacterial agents. Cellular and Molecular Life Sciences, 74(19), 3467–3479. https://doi.org/10.1007/s00018-017-2532-y

Mrudula, S., & Murugammal, R. (2011). Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Brazilian Journal of Microbiology, 42(3), 1119–1127. https://doi.org/10.1590/S1517-83822011000300033

Nowińska, A., Baranowska, J., & Malinowski, M. (2019). The analysis of biodegradation process of selected paper packaging waste. Infrastructure and Ecology of Rural Areas, 3(1), 253–261. https://doi.org/10.14597/INFRAECO.2019.3.1.018

Omerović, N., Djisalov, M., Živojević, K., Mladenović, M., Vunduk, J., Milenković, I., Knežević, N., Gadjanski, I., & Vidić, J. (2021). Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2428–2454. https://doi.org/10.1111/1541-4337.12727

Ortega, N., Busto, M. D., & Perez-Mateos, M. (2001). Kinetics of cellulose sacchariÿcation by Trichoderma reesei cellulases. International Biodeterioration & Biodegradation, 47, 7–14. www.elsevier.com/locate/ibiod

Purkan, Purnama, H. D., & Sumarsih, S. (2015). Production of cellulase enzyme from Aspergilus niger using rice husk and bagasse as inducer. Jurnal Ilmu Dasar, 16(2), 95–102.

Refugio, J., Nieto-villena, A., Ángel, J., & Cruz-mendoza, D. (2017). Monitoring the natural aging degradation of paper by fluorescence. Journal of Cultural Heritage, 26, 22–27. https://doi.org/10.1016/j.culher.2017.01.011

Saito, Y., Tsuchida, H., Matsumoto, T., Makita, Y., Kawashima, M., Kikuchi, J., & Matsui, M. (2018). Screening of fungi for decomposition of lignin-derived products from Japanese cedar. Journal of Bioscience and Bioengineering, 126(5), 573–579. https://doi.org/10.1016/j.jbiosc.2018.05.001

Taskin, E., Teresa, M., Altomare, C., & Loffredo, E. (2019). Biochar and hydrochar from waste biomass promote the growth and enzyme activity of soil-resident ligninolytic fungi. Heliyon, 5(November 2018). https://doi.org/10.1016/j.heliyon.2019.e02051

Wu, Q., Miao, W. S., Zhang, Y. D., Gao, H. J., & Hui, D. (2020). Mechanical properties of nanomaterials: A review. Nanotechnology Reviews, 9(1), 259–273. https://doi.org/10.1515/ntrev-2020-0021

Refbacks

  • There are currently no refbacks.