CULTURABLE ENDOSYMBIOTIC BACTERIA FROM THE INDIAN LAC INSECT, KERRIA LACCA (KERR)

Autor(s): Sweta Verma, Hemant Kumar, Ranganathan Ramani, Ramesh Chadra
DOI: 10.59465/ijfr.2024.11.1.33-45

Abstract

The  Indian  lac  insect,  Kerria lacca  (Kerr)  (Coccoidea:  Tachardiidae)  is  a  commercially important phytosuccivorous and sessile scale insect. Lac insects are cultured on suitable host plants in India and some Southeast Asian countries to produce lac. The lac insect harbours a number of  endosymbionts. Isolation of  culturable microbial endosymbionts and their identification through 16S rRNA has revealed sex and host-related differences of  microbial species. Bacillus boroniphilus, Enterobacter cloacae and Staphylococcus sp. were found only in the lac insects reared on the plant host Cajanus cajan, whereas Bacillus firmus, Lysinibacillus xylanilyticus, Bacillus horneckiae and Bacillus velezensis were recorded only from Flemingia macrophylla. B. firmus and L. xylanilyticus were female-specific and B. horneckiae and B. velezensis were male-specific with Flemingia macrophylla  as  host;  E.  cloacae  was  female-specific  and  Bacillus boroniphilus and Staphylococcus  sp.  were  male specific  with  C.  cajan.  Biochemical  characteristics  of   the  isolates,  their  genetic  relationship  with  their taxonomic kin and their probable role, based on the information available about these endosymbionts in other hosts, have been studied.

Keywords

Kerria lacca, endosymbiont, insect–host relationship, 16S rRNA

Full Text:

PDF

References

Ahmad, A., Kaushik, S., Ramamurthy, V. V., Lakhanpaul, S., Ramani, R., Sharma, K. K., & Vidyarthi, A. S. (2012). Mouthparts and stylet penetration of the lac insect Kerria lacca (Kerr) (Hemiptera:Tachardiidae). Arthropod Structure & Development, 41(5), 435–441. doi://10.1016/j.asd.2012.04.001.

Ahmed, I., Yokota, A., & Fujiwara, T. (2007). A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles, 11(2), 217–224. doi://10.1007/s00792-006-0027-0.

Amund, O. O., & Ogunsina, O. A. (1987). Extracellular amylase production by cassava- fermenting bacteria. Journal of Industrial Microbiology, 2(2), 123–127. doi://10.1007/ BF01569511.

Anand, A. A. P., Vennison, S. J., Sankar, S. G., Prabhu, D. I. G., Vasan, P. T., Raghuraman, T., Geoffrey, C. J., & Vendan, S. E. (2010). Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. Journal of Insect Science (Online), 10, 107. doi://10.1673/031.010.10701.

Anjum, S. I., Shah, A. H., Aurongzeb, M., Kori, J., Azim, M. K., Ansari, M. J., & Bin, L. (2018). Characterization of gut bacterial flora of Apis mellifera from north-west Pakistan. Saudi Journal of Biological Sciences, 25(2), 388– 392. doi://10.1016/j.sjbs.2017.05.008.

Ateyyat, M. A., Shatnawi, M., & Al-Mazraawi, M.S. (2009). Culturable whitefly associated bacteria and their potential as biological control agents. Jordan Journal of Biological Sciences, 2(3), 139–144.

Banjo, A. D., Lawal, O. A., & Adeyemi, A. I. (2006). The microbial fauna associated with the larvae of Oryctes monocerus. Journal of Applied Sciences Research, 2(11), 837–843.

Behar, A., Yuval, B., & Jurkevitch, E. (2005). Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Molecular Ecology, 14(9), 2637–2643. doi://10.1111/j.1365-294X.2005.02615.x.

Belles, X. (2011). Origin and evolution of insect metamorphosis. In: Encyclopedia of Life Sciences (ELS). Chichester: John Wiley and Sons Ltd.

Davidson, E. W., Rosell, R. C., & Hendrix, D. L. (2000). Culturable bacteria associated with the whitefly, Bemisia argentifolii (Homoptera: Aleyrodidae). The Florida Entomologist, 83(2), 159. doi://10.2307/3496151.

Dean, G. J. (1974). Effect of temperature on the cereal aphids Metopolophium dirhodum (Wlk.), Rhopalosiphum padi (L.) and Macrosiphum avenue (F.) (Hem., Aphididae). Bulletin of Entomological Research, 63(3), 401–409. doi://10.1017/S0007485300040888.

Dillon, R., & Charnley, K. (2002). Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Research in Microbiology, 153(8), 503–509. doi://10.1016/ S0923-2508(02)01361-X.

Dillon, R. J., Vennard, C. T., & Charnley, A. K. (2002). A Note: Gut bacteria produce components of a locust cohesion pheromone. Journal of Applied Microbiology, 92(4), 759–763. doi://10.1046/j.1365-2672.2002.01581.x.

Dunbar, H. E., Wilson, A. C. C., Ferguson, N. R., & Moran, N. A. (2007). Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biology, 5(5), e96. doi://10.1371/journal.pbio.0050096.

Feng, W., Wang, X.-Q., Zhou, W., Liu, G.-Y., & Wan, Y.-J. (2011). Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori , reared on different forage. Journal of Insect Science, 11(135), 1–10. doi://10.1673/031.011.13501.

Frago, E., Dicke, M., & Godfray H. C. J. (2012). Insect symbionts as hidden players in insect- plant interactions. Trends in Ecology and Evolution, 27, 705–711.

Frantz, A., Calcagno, V., Mieuzet, L., Plantegenest, M., & Simon, J.-C. (2009). Complex trait differentiation between host-populations of the pea aphid Acyrthosiphon pisum (Harris): implications for the evolution of ecological specialisation. Biological Journal of the Linnean Society, 97(4), 718–727. doi://10.1111/ j.1095-8312.2009.01221.x.

Fukatsu, T., & Hosokawa, T. (2002). Capsule- transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Applied and Environmental Microbiology, 68(1), 389–396. doi://10.1128/AEM.68.1.389-396.2002.

Gai, C. S., Dini-Andreote, F., Andreote, F. D., Lopes, J. R. S., & Araújo, W. L. (2011). Endophytic bacteria associated to sharpshooters (Hemiptera: Cicadellidae), insect vectors of Xylella fastidiosa subsp. pauca. Journal of Plant Pathology & Microbiology, 02(03). doi://10.4172/2157-7471.1000109.

Galaviz-Silva, L., Iracheta-Villarreal, J. M., & Molina- Garza, Z. J. (2018). Bacillus and Virgibacillus strains isolated from three Mexican coasts antagonize Staphylococcus aureus and Vibrio parahaemolyticus. FEMS Microbiology Letters, 365(19). doi://10.1093/femsle/fny202.

Gasper, J., Terentjeva, M., Kántor, A., Ivanišová, E., Kluz, M., & Kačániová, M. (2017). Identification of Apis mellifera gut microbiota with MALDI-TOF MS Biotyper. Animal Science & Biotechnologies, 50(1), 192-196.

Geng, C., Nie, X., Tang, Z., Zhang, Y., Lin, J., Sun, M., & Peng, D. (2016). A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Scientific Reports, 6(1), 25012. doi://10.1038/ srep25012.

Govindarajan, R., Revathi, S., Rameshkumar, N., & Kayalvizhi, N. (2017). Digestion of tannin by bacteria Enterobacter cloacae from the Gut of Indian Mole Cricket (Gryllotalpa krishnani). Journal of Bioprocessing & Biotechniques, 07(03). doi://10.4172/2155-9821.1000302.

Harun-Or-Rashid, Md., Kim, H.-J., Yeom, S.-I., Yu, H.-A., Manir, Md. M., Moon, S.-S., Kang, Y. J., & Chung, Y. R. (2018). Bacillus velezensis YC7010 enhances plant defenses against brown planthopper through transcriptomic and metabolic changes in rice. Frontiers in Plant Science, 9.doi://10.3389/fpls.2018.01904.

Hosokawa, T., Kikuchi, Y., Shimada, M., & Fukatsu, T. (2007). Obligate symbiont involved in pest status of host insect. Proceedings of the Royal Society B: Biological Sciences, 274(1621), 1979–1984. doi://10.1098/rspb.2007.0620.

Hossain, M. T., Khan, A., Chung, E. J., Rashid, Md. H.-O., & Chung, Y. R. (2016). Biological Control of Rice Bakanae by an Endophytic Bacillus oryzicola YC7007. The Plant Pathology Journal, 32(3), 228–241. doi://10.5423/PPJ. OA.10.2015.0218.

Indiragandhi, P., Yoon, C., Yang, J. O., Cho, S., Sa, T. Mi., & Kim, G. H. (2010). Microbial Communities in the Developmental Stages of B and Q Biotypes of Sweetpotato Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of the Korean Society for Applied Biological Chemistry, 53(5), 605–617. doi://10.3839/ jksabc.2010.093.

Janson, E. M., Stireman, J. O., Singer, M. S., & Abbot, P. (2008). Phytophagous insect–microbe mutualisms and adaptive evolutionary diversification. Evolution, 62(5), 997–1012. doi://10.1111/j.1558-5646.2008.00348.x.

Jing, T. Z., Qi, F. H. & Wang, Z. Y. (2020). Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?. Microbiome, 8, 38 doi://10.1186/ s40168-020-00823-y.

Kandasamy, T., Ekbal, S., Gulta, M., Kumari, K., Lohot, V. D., Mohanasundaram, A., & Sharma, K. K. (2018). Plant host induced variation of endosymbionts associated with kusmi lac insects. Multilogic in Science, VIII(C), 99–102.

Kandasamy, T., Ekbal, S., Kumari, K., Lohot, V. D., Mohanasundaram, A., & Sharma, K. K. (2022). Unraveling bacterial diversity of the Indian lac insect Kerria lacca (Kerr) using next generation sequencing. International Journal of Tropical Insect Science, 42, 2365–2372. doi://10.1007/s42690-022-00758-x.

Kapur, A. P. (1962). The Lac Insect. In B. Mukhopadhyay & M. S. Muthana (Eds.), A Monograph on Lac (pp. 59–89). Ranchi: Indian Lac Research Institute.

Lee, C. S., Jung, Y.-T., Park, S., Oh, T.-K., & Yoon, J.-H. (2010). Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. International Journal of Systematic and Evolutionary Microbiology, 60(2), 281–286. doi://10.1099/ijs.0.013367-0.

Maji, P., Chakrabarti, C., & Chatterjee, S. (2012). Phenotyping and molecular characterization of Lysinibacillus sp. P-011 (GU288531) and their role in the development of Drosophila melanogaster. African Journal of Biotechnology, 11(93), 15967–15974. doi://10.5897/ AJB12.2458,

McLean, A. H. C., Godfray, H. C. J., Ellers, J., & Henry, L. M. (2019). Host relatedness influences the composition of aphid microbiomes. Environmental Microbiology Reports, 11(6), 808– 816. doi://10.1111/1758-2229.12795.

Moran, N. A., McCutcheon, J. P., & Nakabachi, A. (2008). Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics, 42(1), 165–190. doi://10.1146/annurev. genet.41.110306.130119.

Nishiwaki, H., Ito, K., Shimomura, M., Nakashima, K., & Matsuda, K. (2007). Insecticidal bacteria isolated from predatory larvae of the antlion species Myrmeleon bore (Neuroptera: Myrmeleontidae). Journal of Invertebrate Pathology, 96(1), 80–88. doi://10.1016/j.jip.2007.02.007.

Oyewole, O. B., & Odunfa, S. A. (1992). Extracellular enzyme activities during cassava fermentation for ’fufu’ production. World Journal of Microbiology & Biotechnology, 8(1), 71–72. doi://10.1007/BF01200690.

Rashid, Md. H.-O.-, Khan, A., Hossain, M. T., & Chung, Y. R. (2017). Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing PHYTOALEXIN DEFICIENT4 in

Arabidopsis. Frontiers in Plant Science, 8. doi://10.3389/fpls.2017.00211.

Reetha, B. M. A., & Mohan, M. (2018). Diversity of commensal bacteria from mid-gut of pink stem borer (Sesamia inferens [Walker])- Lepidoptera insect populations of India. Journal of Asia-Pacific Entomology, 21(3), 937–943. doi://10.1016/j.aspen.2018.07.005.

Saitou, N., & Nei, M. (1987). The neighbor joining method. A new method for reconstructing phylogenetic tree. Molecular Biology and Evolution, 4, 406–425. doi://10.1093/ oxfordjournals.molbev.a040454.

Senderovich, Y., & Halpern, M. (2013). The protective role of endogenous bacterial communities in chironomid egg masses and larvae. The ISME Journal, 7(11), 2147–2158. doi://10.1038/ismej.2013.100.

Shamim, G., Ranjan, S. K., Kandasamy, T., Sharma, K. K., & Ramani, R. (2017). Bacterial flora associated with Kerria lacca (Kerr). Indian Journal of Entomology, 79(1), 41. doi://10.5958/0974-8172.2017.00010.4.

Sharma, K. K., & Jaiswal, A. K. (2011). Microbial Flora associated with lac insects (In Recent Advances in lac insects. (K. K. Sharma & R. Ramani, Eds.; 2nd ed.). Ranchi: Indian Institute of Natural Resins and Gums.

Somerville, J., Zhou, L., & Raymond, B. (2019). Aseptic rearing and infection with gut bacteria improve the fitness of transgenic diamondback moth, Plutella xylostella. Insects, 10(4), 89. doi://10.3390/insects10040089.

Sreerag, R. S., Jayaprakas, C. A., Ragesh, L., & Kumar, S. N. (2014). Endosymbiotic bacteria associated with the mealy bug, Rhizoecus amorphophalli (Hemiptera: Pseudococcidae). International Scholarly Research Notices, 2014, 1–8. doi://10.1155/2014/268491.

Štarhová Serbina L, Gajski D, Pafčo B, Zurek L, Malenovský I, Nováková E, Schuler H, Dittmer (2022) Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts. Environmental Microbiology, 24(12), 5788–5808.

Verma, A., Ramani, R., Sachan, A., Chandra, R. (2023) The role of Wolbachia and the environment on sex determination of the Indian lac insect, Kerria lacca (Coccoidea: Tachardiidae). Journal of Asia-Pacific Entomology, 25(1) 102019. doi://10.1016/j. aspen.2022.102019.

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. doi://10.1093/ molbev/msab120.

Tsuchida, T., Koga, R., Matsumoto, S., & Fukatsu, T. (2011). Interspecific symbiont transfection confers a novel ecological trait to the recipient insect. Biology Letters, 7(2), 245–248. doi://10.1098/rsbl.2010.0699.

Vaishampayan, P., Probst, A., Krishnamurthi, S., Ghosh, S., Osman, S., McDowall, A., Ruckmani, A., Mayilraj, S., & Venkateswaran, K. (2010). Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room. International Journal of Systematic and Evolutionary Microbiology, 60(5), 1031–1037. doi://10.1099/ijs.0.008979-0.

Vashishtha, A., Sharama, K. K., & Lakhanpaul, S. (2011). Co-existence, phylogeny and putative role of Wolbachia and yeast-like symbiont (YLS) in Kerria lacca (Kerr). Current Microbiology, 63(2), 206–212. doi://10.1007/ s00284-011-9961-x.

Wenzel, M., Schonig, I., Berchtold, M., Kampfer, P., & Konig, H. (2002). Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology, 92(1), 32–40. doi://10.1046/j.1365-2672.2002.01502.x.

Xia, X., Gurr, G. M., Vasseur, L., Zheng, D., Zhong, H., Qin, B., Lin, J., Wang, Y., Song, F., Li, Y., Lin, H., & You, M. (2017). Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Frontiers in Microbiology, 8, 663. doi://10.3389/ fmicb.2017.00663.

Yogi, R. K., Kumar, N. & Sharma, K. K. (2022). Lac, plant resins and gums statistics 2020: At a glance. Ranchi: ICAR-Indian Institute of Natural Resins and Gums.

Refbacks

  • There are currently no refbacks.