PERAN RHIZOBAKTERI DALAM FITOEKSTRAKSI LOGAM BERAT KROMIUM PADA TANAMAN JAGUNG

MMA Retno Rosariastuti, Ali Pramono, Ngadiman Ngadiman, Irfan D Prijambada

Abstract


Logam berat bersifat persisten dalam lingkungan dan diketahui mengubah biodiversitas, struktur dan fungsi ekosistem tanah. Remediasi tanah terkontaminasi logam menjadi penting, karena tanah sebagai media penghasil bahan pangan. Pendekatan konvensional untuk remediasi tempat yang terkontaminasi logam meliputi fisika dan kimia, namun aplikasi proses-proses ini terbatas karena kendala teknologi dan ekonomi. Oleh karena itu diperlukan metode remediasi yang murah, aman dan ramah lingkungan seperti bioremediasi. Penelitian ini bertujuan untuk mengetahui kemampuan rhizobakteri dalam membantu fitoekstraksi logam berat kromium pada tanaman jagung. Tahapan penelitian meliputi 1) uji toleransi bakteri terhadap Cr(VI), 2) uji reduksi Cr(VI), dan 3) uji serapan Cr(VI) pada tanaman jagung. Hasil penelitian menunjukkan bahwa Isolat 27 toleran terhadap toksisitas Cr(VI) pada konsentrasi 15 ppm. Isolat 27 mereduksi Cr(VI) secara sempurna dalam waktu 18 jam. Isolat 27 membantu fitoekstraksi logam kromium pada tanaman jagung sebesar 241 kali dibandingkan kontrol. Perlu penelitian lebih lanjut untuk mengetahui jenis asam yang berperan dalam mekanisme fitoekstraksi pada tanaman jagung. Isolat 27 dapat digunakan sebagai inokulan dalam fitoremediasi dan pemacu pertumbuhan tanaman.

Keywords


Cr(VI), maize plant, phytoextraction, rhizobacteria

Full Text:

PDF

References


Baath E. 1989. Effects of Heavy Metals in Soil on Microbial Processes and Population, Water Air Soil Pollut. Vol. 47, pp. 335–379.

Muller JG, Cerniglia CE, and Pritchard PH, 1996. Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Ronald LC, Crawford DL (eds) Bioremediation: principles andapplications. Cambridge University Press, Cambridge, pp 125–194

Kotas J and Stasicka Z. 2000 Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283.

Khan MS, A Zaidi, PA Wani and M Oves. 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19.

Kannan SK, KJ Lee, Krishnamoorthy, A Purusothaman, K Shanthi and NR Rao. 2007. Aerobic Chromate Reducing Bacillus cereus Isolated from the Heavy Metal Contaminated Ennore Creek Sediment, North of Chennai, Tamil Nadu, South East India. Research Journal of Microbiology 2 (2): 133-140.

RehmanA, A Zahoor, B Muneer and S Hasnain. 2008. Chromium Tolerance and Reduction Potential of a Bacillus sp.ev3 Isolated from Metal Contaminated Wastewater. Bull Environ Contam Toxicol 81:25–29

Rajkumar M, R Nagendran, KJ Lee, WH Lee. 2005. Characterization of a Novel Cr6+ Reducing Pseudomonas sp. with Plant Growth–Promoting Potential. Current Microbiology Vol. 50:266–271

Thacker U and D Madamwar 2005. Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World Journal of Microbiology & Biotechnology 21: 891–899

Banks MK, Schwab AP, & Henderson C. 2006. Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere 62:255–264.

Putri ARN, 2010. Karakterisasi dan Identifikasi Rhizobakteri yang Meningatkan Serapan Krom pada Tanaman. Skripsi. Program Studi Mikrobiologi Pertanian Fakultas Pertanian UGM. Yogyakarta.

Upreti RK, R Shrivastava and UC Chaturvedi. 2004. Gut microflora & toxic metals: Chromium as a model. Indian J Med Res 119, February, pp 49-59.

Cervantes C, Campos-Garc J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, and Moreno- Sanchez R, 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25: 335–347.

De Flora S, BAgnasco M, Serra D, and Zanacchi P. 1990. Denotoxicity of chromium compounds: A review. Muta Res 238:99-172

Bae WC, TG Kang, IK Kang, YJ Won, and BC Jeong. 2000. Reduction of Hexavalent Chromium by Escherichia coli ATCC 33456 in Batch and Continuous Cultures. The Journal of Microbiology. Vol. 38 No. 1, p.36-39

Bopp LH and HL Ehrlich. 1988. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol., 150: 426

Alexander, M. 1991. Introduction to Soil Microbiology. John Wiley and Sons. New York.

Atlas RM and Bartha R. 1993. Microbial ecology: Fundamental and application. California. Benjamin Cummings Publishing Company.

Gadd GM and White C. 1993. Microbial treatment of metal pollution: a working biotechnology 11: 353-392

Priester JH, SG Olson, SM Webb, MP Neu, LE Hersman, and PA Holden. 2006. Enhanced Exopolymer Production and Chromium Stabilization in Pseudomonas putida Unsaturated Biofilms. Applied and Environmental Microbiology, 72:1988–1996

Wang YT and H Shen. 1995. Bacterial reduction of hexavalent chromium. J. Ind. Microbiol. 14, 159-164.

Ohtake H, E Fujii, and K Toda. 1990. A survey of effective electron donors for reduction of toxic hexavalent chromium by Enterobacter cloacae (strain HO1). J. Gen. Appl. Microbiol. 36, 203-208.

Ramirez-Diaz MI, C Diaz-Perez, E Vargas, H Riveros-Rosas, J Campos- Garcia, C Cervantes. 2008. Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM and Gray MS. 1999. Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermusisolate. Applied and Environmental Microbiology 65:1214−1221.

Shanker, A. K., C. Cervantes, H. Loza- Tavera, dan S. Avudainayagam. 2005. Chromium toxicity in plants. Environ. Int. 31: 739-753.

Hara T and Sonoda Y. 1979 Comparison of the toxicity of heavy metals to cabbage growth. Plant Soil 51, 127– 133.

Hoflich G and Metz R. 1997. Interaction of plant microorganismassociation in heavy metal containing soils from sewage farms. Bodenkultur 48:238– 247

Kramer U, Pickering IJ, Prince RC, Raskin I, and Salt DE. 2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353.

Tolra RP, Poschenrieder C, and Barcelo M. 1996. Zinc hyperaccumulation in Thlaspi caerulescens, II. Influence on organic acids. J Plant Nutr 19:1541– 1550

Ma JF, Zheng SJ, and Matsumoto H. 1997. Defoxifying aluminum with buckwheat. Nature 390:569–570. 30. Davies Jr., F. T., J. D. Puryear, R. J. Newton, J. N. Egilla, dan J. A. S. Grossi. 2001. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J. Plant. Physiol. 158: 777- 786.

Srivastava, S., S. Prakash, dan M. M. Srivastava. 1999. Chromium mobilization and plant availability the impact of organic complexing ligands. Plant Soil 212: 203-208.

Yoon, J., X. Cao, Q. Zhou, dan L. Q. Ma. 2006. Accumulation of Pb, Cu, dan Zn in native plants growing on a contaminated Florida site. Sci. Total. Environ. 368:456-464.

Cervantes C, and Campos-Garcia J. 2007. Reduction and efflux of chromate by bacteria. Mol Microb Heavy Metals Springer-Verlag, Berlin




DOI: https://doi.org/10.20886/jklh.2012.6.1.38-50

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Jurnal Ecolab

This Journal Index by:

  

 

 

  

e-ISSN: 2502-8812, p-ISSN: 1978-5860
Ecolab is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License