Pengaruh Pemberian Variasi Bahan Organik Terhadap Peningkatan Produksi Padi dan Penurunan Emisi Metana (CH4) di Lahan Sawah Tadah Hujan

Ika Ferry Yunianti, Hesti Yulianingrum, Miranti Ariani

Abstract


Budidaya tanaman padi memegang peranan penting dalam peningkatkan produksi pangan di Indonesia dan pembentukan emisi CH4 dari lahan sawah. Pemberian bahan organik ke dalam tanah berfungsi untuk memperbaiki kualitas tanah dan meningkatkan produktivitas tanaman, disisi lain dapat menyebabkan emisi gas rumah kaca. Besaran emisi CH4 akibat pemberian bahan organik tergantung pada kandungan C organik dan tingkat dekomposisinya. Pemilihan bahan organik yang tepat perlu dilakukan sebagai upaya untuk mengurangi emisi CH4 tanpa mengabaikan produktivitas tanah dan tanaman. Penelitian ini bertujuan untuk menentukan bahan organik yang dapat meningkatkan produktivitas sekaligus menekan emisi CH4 dari budidaya tanaman padi di lahan sawah tadah hujan. Penelitian ini dilaksanakan pada bulan Oktober 2016-Januari 2017 di Kebun Percobaan Balai Penelitian Lingkungan Pertanian, yang merupakan salah satu daerah tadah hujan di Kabupaten Pati, Provinsi Jawa Tengah. Penelitian disusun secara acak kelompok dengan 4 perlakuan yang diulang sebanyak 3 kali. Varietas padi yang digunakan dalam penelitian ini adalah Ciherang. Perlakuan terdiri dari : 1) kompos 5 ton/ha, 2) jerami padi 5 ton/ha, 3) biokompos 5 ton/ha, dan 4) tanpa bahan organik. Hasil penelitian menunjukkan bahwa produksi padi yang dihasilkan oleh empat perlakuan secara berturut-turut adalah 4,76; 5,13; 4,72 dan 4,61 ton/ha dengan total emisi CH4 153; 281; 197; 143 kg/ha/musim, sedangkan nilai produksi padi per kg CH4 yang dihasilkan secara berturut-turut adalah 31,1; 18,3; 24,0 dan 32,2. Pemberian bahan organik berupa kompos berpotensi lebih optimal dalam meningkatkan produksi padi dan menurunkan emisi CH4 di lahan sawah tadah hujan dibandingkan jerami padi dan biokompos.

 


Keywords


Produksi padi; emisi metana; bahan organik; sawah tadah hujan

References


Adhya, T. K., Bharati, K., Mohanty, S. R., Ramakrishnan, B., Rao, V. R., Sethunathan, N., & Wassmann, R. (2000). Methane emission from rice fields at Cuttack, India. Nutrient Cycling in Agroecosystems, 58(1–3), 95–105. doi://10.1023/A:1009886317629.

Annisa, W., & Nusyamsyi, D. (2016). Pengaruh amelioran, pupuk dan sistem pengelolaan tanah sulfat masam terhadap hasil padi dan emisi metana. Jurnal Tanah dan Iklim, 40(2), 135–145. doi://10.21082/jti.v40n2.2016.135-145.

Atmojo, S. W. (2003). Peranan bahan organik terhadap kesuburan tanah dan upaya pengelolaannya. Sebelas Maret University Press, 36. doi://10.1017/CBO9781107415324.004.

Aulakh, M. S., Wassmann, R., Bueno, C., Kreuzwieser, J., & Rennenberg, H. (2001). Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biology, 3(2), 139–148. doi://10.1055/s-2001-12905.

Aulakh, M. S., Wassmann, R., & Rennenberg, H. (2002). Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries. Agriculture, Ecosystems and Environment, 91(1–3), 59–71. doi://10.1016/S0167-8809(01)00260-2.

IAEA. (1992). Manual on measurement of methane and nitrous oxide emission from agriculturure. Manual on Measurement ofMethane and Nitrous Oxide Emission from Agricultural. Austria: International Atomic Energy Agency.

Ibrahim, M., Cao, C. G., Zhan, M., Li, C. F., & Iqbal, J. (2015). Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. International Journal of Environmental Science and Technology, 12(1), 263–274. doi://10.1007/s13762-013-0429-3.

Jeffery, S., Verheijen, F. G. A., Kammann, C., & Abalos, D. (2016). Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology and Biochemistry, 101, 251–258. https://doi.org/10.1016/j.soilbio.2016.07.021.

Kartikawati, R., Yunianti, I. F., & Wihardjaka, A. (2017). Pemanfaatan lahan tadah hujan untuk budidaya padi unggul dalam menghadapi perubahan iklim. Jurnal Lahan Suboptimal, 6(2), 142–149.

Kasno, A., Rostaman, T., & Setyorini, D. (2016). Increasing productivity of rainfed area with N, P, and K fertlizers and use of high yielding varieties. Journal of Soil and Climate, 40(2), 147–157.

Khosa, M. K., Sidhu, B. S., & Benbi, D. K. (2010). Effect of organic materials and rice cultivars on methane emission from rice field. Journal of Environmental Biology, 31(3), 281–285.

Kongchum, M. (2005). Effect of plant residue and water management practices on soil redox chemistry, methane emission, and rice productivity. A Doctoral Dissertations. Louisiana State University and Agricultural and Mechanical College, 1–202.

Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37(1), 25–50. doi://10.1016/S1164-5563(01)01067-6.

Lehmann, J., & Joseph, S. (2012). Biochar for environmental management: Science and technology. Biochar for Environmental Management: Science and Technology. doi://10.4324/9781849770552.

Linquist, B., Van Groenigen, K. J., Adviento-Borbe, M. A., Pittelkow, C., & Van Kessel, C. (2012). An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology, 18(1), 194–209. doi://10.1111/j.1365-2486.2011.02502.x.

Liu, G., Ma, J., Yang, Y., Yu, H., Zhang, G., & Xu, H. (2017). Effects of straw incorporation methods on nitrous oxide and methane emissions from a wheat-rice rotation system. Pedosphere, 29(2), 204–215. doi://10.1016/S1002-0160(17)60410-7.

Luo, Y., & Zhou, X. (2006). Soil respiration and the environtment. California, USA: Academic Press in an imprint of Elsevier.

Mandal, S., Vema, V. K., Kurian, C., & Sudheer, K. P. (2020). Improving the crop productivity in rainfed areas with water harvesting structures and deficit irrigation strategies. Journal of Hydrology, 586(March), 124818. doi://10.1016/j.jhydrol.2020.124818.

Mulyadi, & Wihardjaka, A. (2014). Emisi gas rumah kaca dan hasil gabah dari tiga varietas padi pada lahan sawah tadah hujan bersurjan. Jurnal Penelitian Pertanian Tanaman Pangan, 33(2), 116. doi://10.21082/jpptp.v33n2.2014.p116-121.

Muttaqien, K., Ariffin, & Wardiyati, T. (2018). Evaluasi dampak sistem pengelolaan air pada budidaya padi ( Oryza sativa L .). Jurnal Produksi Tanaman, 6(8), 1810–1817.

Muzaiyanah, S., & Subandi. (2016). Peranan bahan organik dalam peningkatan produksi kedelai dan ubi kayu pada lahan kering masam. Iptek Tanaman Pangan, 11(2), 149–158.

Setyanto, P., Makarim, A. K., Fagi, A. M., Wassmann, R., & Buendia, L. V. (2000). Crop management affecting methane emissions from irrigated and rainfed rice in Central Java (Indonesia). Nutrient Cycling in Agroecosystems, 58(1–3), 85–93. doi://10.1023/A:1009834300790.

Setyanto, Prihasto. (2002). Mitigasi gas metan dari lahan sawah. In Lahan Sawah dan Pengelolaannya. Badan Litbang Pertanian (pp. 289–305).

Sutrisna, N., Surdianto, Y., & Marbun, O. (2016). Pengaruh pemberian jerami dan varietas padi inbrida terhadap emisi gas rumah kaca di lahan sawah irigasi. Jurnal Tanah dan Iklim, 40(2), 79–85. doi://10.2017/jti.v40i2.5517.

Tan, W., Yu, H., Huang, C., Li, D., Zhang, H., Jia, Y., … Xi, B. (2018). Discrepant responses of methane emissions to additions with different organic compound classes of rice straw in paddy soil. Science of the Total Environment, 630, 141–145. doi://10.1016/j.scitotenv.2018.02.230.

Thakur, A. K., Kassam, A., Stoop, W. A., Uphoff, N., Barton, L., Wolf, B., … Yagi, K. (2015). Guidelines for measuring CH4 and N2O emissions from rice paddies by a manually operated closed chamber method. Scientific reports (Vol. 235). doi://10.1016/j.agee.2016.10.011.

Wang, C., Lai, D. Y. F., Sardans, J., Wang, W., Zeng, C., & Peñuelas, J. (2017). Factors related with CH4 and N2O emissions from a paddy field: Clues for management implications. PLoS ONE, 12(1), 1–23. https://doi.org/10.1371/journal.pone.0169254.

Wassmann, R., & Aulakh, M. S. (2000). The role of rice plants in regulating mechanisms of methane missions. Biology and Fertility of Soils, 31(1), 20–29. doi://10.1007/s003740050619.

Wihardjaka, A. (2015). Mitigation of methane emission through lowland management. Journal Litbang Pertanian, 32(2), 95–104.

Zhang, D., Pan, G., Wu, G., Kibue, G. W., Li, L., Zhang, X., … Liu, X. (2016). Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere, 142, 106–113. doi://10.1016/j.chemosphere.2015.04.088.

Zhang, H., Liu, H., Hou, D., Zhou, Y., Liu, M., Wang, Z., … Yang, J. (2019). The effect of integrative crop management on root growth and methane emission of paddy rice. The Crop Journal, 7, 444–457.

Zhang, Y., Jiang, Y., Li, Z., Zhu, X., Wang, X., Chen, J., … Zhang, W. (2015). Aboveground morphological traits do not predict rice variety effects on CH4 emissions. Agriculture, Ecosystems & Environment, 208, 86–93. doi://10.1016/j.agee.2015.04.030.

Zhang, Y., Wang, Y. Y., Su, S. L., & Li, C. S. (2011). Quantifying methane emissions from rice paddies in Northeast China by integrating remote sensing mapping with a biogeochemical model. Biogeosciences Discussions, 8(1), 385–414. doi://10.5194/bgd-8-385-2011.

Zou, J., Huang, Y., Jiang, J., Zheng, X., & Sass, R. L. (2005). A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Global Biogeochemical Cycles, 19(2), 1–9. doi://10.1029/2004GB002401.




DOI: https://doi.org/10.20886/jklh.2020.14.2.79-90

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Ecolab

This Journal Index by:

  

 

 

  

e-ISSN: 2502-8812, p-ISSN: 1978-5860
Ecolab is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License