ILG Nurtjahtjaningsih, AYPBC Widyatmoko, Anto Rimbawanto


Genetically pure species that used as genetic materials represent crucial factors for succeed of a tree improvement strategy. Using microsatellite markers, private allele and genetic variation could genetically distinguish a species. Aims in this study were to  characterize microsatellite markers on Eucalyptus deglupta, E. urophylla and E. pellita, and to assess private allele and genetic variation on the tree Eucalyptus. Results showed that 8, 10 and 12 out of 13 the screened microsatellite markers were amplified and polymorphic on E. deglupta, E. urophylla and E. pellita respectively. Private alleles characterized each  Eucalyptus. Number of detected allele ranged between 29 (E. deglupta) and 91 (E. pellita). Value of expected heterozygosity was lowest on E. deglupta (HE=0.308) and highest on E. pellita (HE=0.604). Coefficient inbreeding value was insignificant deviate from HWE on E. deglupta and E. urophylla, but it was significant on E. pellita. Taxonomy relationship and geographic position in natural distribution each Eucalyptus was discussed. For further study, population genetic and mating system will be important information on the Eucalyptus.


E.deglupta; E.urophylla; E.pellita; private allele; expected heterozygosity; coefficient

Full Text:



Avramidou, E., Ganopoulos, I. V., and Aravanopoulos, F. A. (2010). DNA fingerprinting of elite Greek wild cherry Prunus avium L.) genotypes using microsatellite markers. Forestry, 83(5).

Brondani, R. P. V., Brondani, C., Tarchini, R., and Grattapaglia, D. (1998). Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet, 97: 816-827.

Burke, M. K., and Long, A. D. (2012). Perspective: What paths do advantageous alleles take during short-term evolutionary change? Molecular Ecology, 21: 4913-4916.

Chaix, G., Gerber, S., Razafimaharo, V., Vigneron, P., erhaegen, D., and Hamon, S. (2003). Gene flow estimation with microsatellites in a Malagasi seed orchard of ucalyptus grandis. Theor Appl Genet, 107: 705-712.

Chandra, A., Tiwari, K. K., Nagaich, D., Dubey, N., Kumar, S., and Roy, A. K. (2011). Development and characterization of microsatellite markers from tropical forage Stylosanthes species and anlysis of genetic variability and cross-species transferability. Genome, 54: 1016-1028.

Dering, M., and Chybicki, I. (2012). Assessment of genetic diversity in two-species oak seed stands and their progeny populations. Scandinavian Journal of Forest Research, 27: 2-9.

Echt, C. S., Vendramin, G. G., Nelson, C. D., and Marquardt, P. (1999). Microsatellite DNA as shared genetic markers among conifer species. Can. J. For. Res, 29: 365-371.

Eldridge, K., Davidson, J., Harwood, C., and Wyk, G. v. (1997). Eucalyptus domestication and breeding: Oxford Science Publications pp. 288.

Ghamkhar, K., Croser, J., Aryamanesh, N., Campbell, M., Kon’kova, N., and Francis, C. (2010). Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome, 53: 558-567.

Goudet, J. (2001). FSTAT (version 2.9.3): A program to estimate and test gene diversities and fixatin indices. Retrieved from www.unil.ch/izea/softwares/fsat. html website:

Hu, L.-J., Uchiyama, K., Saito, Y., and Ide, Y. (2010). ontrasting patterns of nuclear microsatellite genetic structure of Jurnal Pemuliaan Tanaman Hutan Vol 7 No. 2, September 2013, 107 - 118

Fraxinus mandshurica var. japonica between northern and southern populations in Japan. Journal of Biogeography (J. Biogeogr), 37: 1131- 1143.

Jan, C., Dawson, D. A., Altringham, J. D., Burke, T., and Butlin, R. K. (2012). Development of conserved icrosatellite markers of high cross-species utility in bat species Vespertilionidae, Chiroptera, Mammalia). Molecular Ecology Resources, 12: 532-548.

Karan, M., Evans, D. S., Reilly, D., Schulte, K., Wright, C., Innes, D., Holton, T. A., Nikles, D. G., and Dickinson, G. R. (2012). Rapid microsatellite marker development for African mahogany (Khaya senegalensis, Meliaceae) using next-generation sequencing and assessment of its intra-specific genetic diversity. Molecular Ecology Resources, 12: 344-353.

Kinlaw, C. S., and Neale, D. B. (1997). Complex gene families in pine genomes. Trends in plant science, 2(9): 356-359.

Manel, S., Poncet, B. N., Legendre, P., Gugerlis, F., and Holdereggers, R. (2010). Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Molecular Ecology, 19: 3824-3835.

Mariette, S., Chagne, D., Decroocq, S., Vendramin, G. G., Lalanne, C., Madur, D., and Plomion, C. (2001). Microsatellite markers for Pinus pinaster Ait. Ann. For. Sci, 58: 203-206.

McCulloch, E. S., and Stevens, R. D. (2011). Rapid development and screening of microsatellite loci for Artibeus lituratus and their utility for six related species within Phyllostomidae. Molecular Ecology Resources, 11: 903-913.

McKinnon, G. E., Steane, D. A., Potts, B. M., and Vaillancourt, R. E. (1999). Incongruence between chloroplast and species phygenies in Eucalyptus Subgenus Monocalyptus (Myrtaceae). American Journal of Botany, 86(7): 1038-1046.

Moriguchi, Y., Iwata, H., Ujino-Ihara, T., Yoshimura, K., Taira, H., and Tsumura, Y. (2003). Development and characterization of microsatellite markers for Cryptomeria japonica D.Don. Theor Appl Genet, 106: 751- 758.

Nagy, I., Stagel, A., Savari, Z., Roder, M., and Ganal, M. (2007). Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annum L.). Genome, 50: 668-688.

Peakall, R., and Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel, Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288-295.

Poncet, V., Dufour, M., Hamon, P., Hamon, S., Kochko, A. d., and Leroy, T. (2007). Development of genomic microsatellite markers in Coffea canephora and their transferability to other coffee species. Genome, 50: 1156-1161.

Shiraishi, S., and Watanabe, A. (1995). Identification of chloroplast genome between Pinus densiflora Sieb et Zucc and P. thumbergii Parl based on the polymorphism in rbcL gene. Journal of Japanese Forestry Society, 77: 429-436.

Takezaki, N., Nei, M., and Tamura, K. (2010). Software for constructing population trees from allele frequency data and computing other population statistics with windows interface. Molecular Biology Evolution, 24(4): 747-752.

Tsuda, Y., and Ide, Y. (2005). Wide-range analysis of genetic structure of Betula maximowicziana, a long-lived pioneer tree species and noble hardwood in the cool temperate zone of Japan. Molecular Ecology, 14: 3929-3941.

Ujino, T., Kawahara, T., Tsumura, Y., Nagamitsu, T., Yoshimaru, H., and Ratnam, W. (1998). Development and polymorphism of simple sequnce repeat DNA markers for Shorea curtisii and other Dipterocarpaceae species. Heredity, 81: 422-428.

DOI: https://doi.org/10.20886/jpth.2013.7.2.107-118


  • There are currently no refbacks.

Copyright (c) 2019 Jurnal Pemuliaan Tanaman Hutan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Jurnal Pemuliaan Tanaman Hutan Indexed By:


Copyright of Jurnal Pemuliaan Tanaman Hutan (JPTH)

eISSN : 2527-8665   pISSN : 1693-7147