STRUKTUR GENETIK POHON INDUK Calophyllum inophyllum DI TEGAKAN BENIH PROVENAN BERDASARKAN PENANDA SIMPLE SEQUENCES REPEATS

ILG Nurtjahjaningsih, Purnamila Sulistyawati, Anto Rimbawanto

Abstract


This study aimed to assess genetic structure of Calophyllum inophyllum using simple sequences repeats (SSR) markers to control genetic diversity at a provenance seed stand. Leaf samples were collected for DNA templates and 6 SSR primers were used. Genetic data of 280 trees were analyzed by FSTAT software, while PCoA was analyzed by GeneAlex. Results showed that number of allele (NA) per SSR primer between 3 and 4, the allelic richness (AR) ranged 2.805 to 4.000, the gene diversity (HE) ranged 0.018 to 0.631, coefficient inbreeding (FIS) of overall SSR primers were insignificant deviate from Hardy-Weinberg Equilibrium, excepted NY3. The mean HE values in the TBP was in low (mean HE= 0.272). However, the mean coefficient inbreeding values was not significant. PCoA analysis showed that the seed stand consisted genetically related trees; the 280 trees originated from only 5-6 mother trees. This is because the stand was originated from a conservation stand with narrow genetic differentiation. Management of the seed stand was discussed.


Keywords


gene diversity; genetic differentiation; inbreeding

Full Text:

PDF

References


Alexander, L., & Keith Woeste. (2017). Pollen gene flow, male reproductive success and genetic correlations among offspring in a northern read oak (Quercus rubra L.) seed orchard. Plos One. https://doi.org/DOI:10.1371/journal.pone.0171598

Borrell, J. S., Wang, N., Nichols, R. A., & Buggs, R. J. A. (2018). Genetic diversity maintained among fragmented populations of tree undergoing range contraction. Heredity, 121, 304–318.

Caignard, T., Delzon, S., Bodénès, C., Dencausse, B., & Kremer, A. (2019). Heritability and genetic architecture of reproduction-related traits in a temperate oak species. Tree Genetics & Genomes, 15(1). https://doi.org/https://doi.org/10.1007/s11295-018-1309-2

Dong, B., Deng, Y., Wang, H., Gao, R., Stephen, G. K., Chen, S., … Fadi Chen. (2017). Gibberellic acid signaling is required to induce flowering of Chrysanthemums grown under both short and long days. International Journal of Molecular Sciences, 18(1259). https://doi.org/10.3390/ijms18061259

Fadhlullah, M., Widiyanto, S. N. B., & Restiawati, E. (2015). The potential of nyamplung (Calophyllym inophyllum L.) seed oil as biodiesel feedstock: effect of seed moisture content and praticle size on oil yield. Energy Procedia, 68, 177–185.

Fløistad, I. S., Hanssen, G. H. H., & Granhus, A. (2018). Germination and seedling establishment of Norway spruce (Picea abies) after clear-cutting is affected by timing of soil scarification. New Forests, 49(2), 231–247.

Galimba, K. D., Bullock, D. G., Dardick, C., Liu, Z., & Callahan, A. M. (2019). Gibberellic acid induced parthenocarpic “Honeycrips” apples (Malus domestica) exhibit reduced ovary width and lower acidity. Horticulture Research, 6(41). https://doi.org/Galimba et al. Horticulture Research ( 2019) https://doi.org/10.1038/s41438-019-0124-8

Goudet, J. (2001). FSTAT (version 2.9.3): A program to estimate and test gene diversities and fixation indices. https://doi.org/www.unil.ch/izea/softwares/fstat.html

Guimarães, R. A., Miranda, K. M. C., Chaves, L. J., Naves, R. V., Telles, M. P. de C., & Thannya Nascimento Soares. (2019). Mating system and pollen dispersal in Dipteryx allata Vogel (Leguminosae): comparing in situ and ex situ conditions. Tree Genetics & Genomes, 15(28). https://doi.org/https://doi.org/10.1007/s11295-019-1337-6

Hasan, M. N. H., Abdullah, H. M., & Sarker, U. (2019). Spatial distribution and genetic diversity of wild date palm (Phoenix sylvestris) growing in coastal Bangladesh. Tree Genetics & Genomes, 15(3). https://doi.org/https://doi.org/10.1007/s11295-018-1310-9

Jiang, W., Bai, T., Dai, H., Wei, Q., Zhang, W., & Ding, Y. (2017). Microsatellite markers revealed moderate genetic diversity and population differentiation of moso bamboo (Phyllostachys edulis)—a primarily asexual reproduction species in China. Tree Genetics & Genomes, 13(130). https://doi.org/https://doi.org/10.1007/s11295-017-1212-2

Kindt, R., Dawson, I., & I. John. (2017). Documentation of agroforestry species web database (version 1.4).

Leksono, B., Hendrati, R. L., Windyarini, E., & Trimaria Hasnah. (2014). Variation in biofuel potential of twelve Calophyllum inophyllum populations in Indonesia. Indonesian Journal of Forest Research, 1(2), 127–138.

Nurtjahjaningsih, I. L. G. (2009). A potency of genetic infusion populations to broaden genetic variation in the seedling seed orchard of Pinus merkusii in Jember. Jurnal Pemuliaan Tanaman Hutan, 3(2), 73–81.

Nurtjahjaningsih, I. L. G., Haryanti, T., Widyatmoko, A., Indrioko, S., & Rimbawanto, A. (2015). Keragaman genetik populasi Calophyllum inophyllum menggunakan penanda RAPD (Random Amplification Polymorphism DNA). Jurnal Pemuliaan Tanaman Hutan, 9(2), 91–102.

Nurtjahjaningsih, I. L. G., Saito, Y., Lian, C. L., Tsuda, Y., & Ide, Y. (2005). Development and characteristics of microsatellite markers in Pinus merkusii. Molecular Ecology Notes, 5(3). https://doi.org/10.1111/j.14718286.2005.00984.x

Nurtjahjaningsih, I. L. G., Saito, Y., Tsuda, Y., & Ide, Y. (2007). Genetic diversity of parental and offspring populations in a Pinus merkusii seedling seed orchard detected by microsatellite markres. Bulletin-Tokyo University Forest, 118, 1–14.

Nurtjahjaningsih, I. L. G., Sulistyawati, P., Widyatmoko, A., & Rimbawanto, A. (2012). Karakteristik pembungaan dan sistem perkawinan nyamplung (Calophyllum inophyllum) pada hutan tanaman di Watusipat, Gunung Kidul. Jurnal Pemuliaan Tanaman Hutan, 6(2), 65–80.

Peakall, R., & Smouse, P. E. (2006). GenAlex 6: Genetic analysis in excel, Population genetic software for teachng and research. Molecular Ecology Notes, 6, 288–295.

Potter, K. M., Campbell, A. R., Josserand, S. A., Nelson, C. D., & Jetton, R. M. (2017). Population isolation results in unexpectedly high differentiation in Carolina hemlock (Tsuga caroliniana), an imperiled southern Appalachian endemic conifer. Tree Genetics & Genomes, 13(105). https://doi.org/https://doi.org/10.1007/s11295-017-1189-x

Shiraishi, S., & Watanabe, A. (1995). Identification of chloroplast genome between Pinus densiflora Sieb et Zucc and P. thumbergii Parl based on the polymorphism in rbcL gene. Journal of Japanese Forestry Society, 77, 429–436.

Song, J., Ratcliffe, B., Kess, T., S.Lai, B., Korecky, J., & El-Kassaby, Y. A. (2018). Temporal quantification of mating system parameters in a coastal Douglas-fir seed orchard under manipulated pollination environment. Scientific Reports. https://doi.org/DOI:10.1038/s41598-018-30041-4

Torokeldiev, N., Ziehe, M., Gailing, O., & Finkeldey, R. (2019). Genetic diversity and structure of natural Juglans regia L. populations in the southern Kyrgyz Republic revealed by nuclear SSR and EST-SSR markers. Tree Genetics & Genomes, 15(5). https://doi.org/https://doi.org/10.1007/s11295-018-1311-8

Zobel, B., & Talbert, J. (1991). Applied forest tree improvement. U.S.A: Waveland Press, Inc.




DOI: https://doi.org/10.20886/jpth.2019.13.1.45-51

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Jurnal Pemuliaan Tanaman Hutan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Jurnal Pemuliaan Tanaman Hutan Indexed By:

 

Copyright of Jurnal Pemuliaan Tanaman Hutan (JPTH)

eISSN : 2527-8665   pISSN : 1693-7147

48